Loop Analysis - Incidence Matrix B

Example

For the circuit shown below find the currents \boldsymbol{I}_{1} to \boldsymbol{I}_{6}, the voltage \boldsymbol{U}_{6}, the input impedance $\boldsymbol{Z}_{\text {in }}$ and the voltage transfer $\boldsymbol{K}_{\mathbf{0 6}}=\boldsymbol{U}_{\mathbf{6}} / \boldsymbol{U}_{01}$. Use incidence matrix \mathbf{B} to solve this task, when $\boldsymbol{Z}_{1}=\boldsymbol{Z}_{6}=50 \Omega, \boldsymbol{Z}_{2}=\boldsymbol{Z}_{3}=-j 50 \Omega, \boldsymbol{Z}_{4}=\boldsymbol{Z}_{\mathbf{5}}=j 100 \Omega$, $u_{01}(t)=10 \cos (\omega t) \mathrm{V}$ and $\omega=10^{5} \mathrm{rad} / \mathrm{s} . \boldsymbol{Z}_{1}$ is the internal resistance of the source.

Circuit

Solution

For the voltage source given by $u_{01}(t)=10 \cos (\omega t)$ the phasor is $\boldsymbol{U}_{\mathbf{0 1}}=10 \mathrm{e}^{j 0^{\circ}}$ $=10 \angle 0^{\circ}$.

Circuit Diagram

For the circuit diagram shown above we get the incidence matrix \mathbf{B}

$$
\mathbf{B}=\left[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right] \begin{aligned}
& s_{1} \\
& s_{2} \\
& s_{3}
\end{aligned}
$$

The matrix $\mathbf{U}_{\mathbf{0}}$ of the branch sources and the branch impedance matrix \mathbf{Z} are

$$
\mathbf{U}_{\mathbf{0}}=\left[\begin{array}{c}
\boldsymbol{U}_{\mathbf{0 1}} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \quad \mathbf{Z}=\left[\begin{array}{cccccc}
\boldsymbol{Z}_{\mathbf{1}} & 0 & 0 & 0 & 0 & 0 \\
0 & \boldsymbol{Z}_{\mathbf{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & \boldsymbol{Z}_{\mathbf{3}} & 0 & 0 & 0 \\
0 & 0 & 0 & \boldsymbol{Z}_{\mathbf{4}} & 0 & 0 \\
0 & 0 & 0 & 0 & \boldsymbol{Z}_{\mathbf{5}} & 0 \\
0 & 0 & 0 & 0 & 0 & \boldsymbol{Z}_{\mathbf{6}}
\end{array}\right]
$$

The matrix of the loop voltage sources is

$$
\mathbf{U}_{\mathbf{0 S}}=\mathbf{B} \mathbf{U}_{\mathbf{0}}
$$

The loop impedance matrix is

$$
\mathbf{Z}_{\mathbf{S}}=\mathbf{B} \mathbf{Z}^{\mathrm{T}} \mathbf{B} \quad\left({ }^{\mathrm{T}} \mathbf{B} \text { is the transpose of the matrix } \mathbf{B}\right)
$$

The loop current matrix is

$$
\mathbf{I}_{\mathbf{S}}=\mathbf{Z}_{\mathbf{S}}^{-1} \mathbf{U}_{0 S} \quad\left(\mathbf{Z}_{S}^{-1} \text { is the inverse of the matrix } \mathbf{Z}_{\mathrm{S}}\right)
$$

The branch current matrix is

$$
\mathbf{I}={ }^{\mathrm{T}} \mathbf{B} \mathbf{I}_{\mathbf{S}}
$$

The input impedance is

$$
Z_{\text {in }}=\frac{U_{1}}{I_{1}}=\frac{U_{01}}{I_{1}}-Z_{1} \quad\left(Z_{1} I_{1}+U_{1}=U_{01} \quad \Rightarrow \quad U_{1}=U_{01}-Z_{1} I_{1}\right)
$$

The voltage $\boldsymbol{U}_{\mathbf{6}}$ and the voltage transfer $\boldsymbol{K}_{\mathbf{0 6}}$ are

$$
U_{6}=Z_{6} I_{6} \quad K_{06}=\frac{U_{6}}{U_{01}}
$$

The MATLAB program for solving this task is

MATLAB Script

```
clear; clc
% input values
% the impedances are in ohms
Z1=50; Z2=-j*50; Z3=-j*50; Z4=j*100; Z5=j*100; Z6=50;
% the voltages are in volts
% voltage u01:
u01max=10; u01angle=0; % angle in degrees
% complex representation of the voltage u01
U01=u01max*exp(j*u01angle*pi/180);
% incidence matrix B
B=[[1 1 1 0 0 1 0;
    0 -1 -1 1 0 0;
    0 0 1 0 -1 1];
% column matrix UO
U0=[U01; 0; 0; 0; 0; 0];
% diagonal matrix Z
Z=diag([Z1 Z2 Z3 Z4 Z5 Z6]);
U0s=B*U0;
Zs=B*Z*B';
Is=inv(Zs)*U0s;
I=B'*Is
Zin=U01/I(1)-Z1
U6=I (6)*Z6
Ku=U6/U01
```

The results obtained from MATLAB are

```
I =
    0.0100 - 0.0300i
    0.0100 + 0.0700i
    -0.0100 + 0.1300i
            0 - 0.1000i
            0.0200 - 0.0600i
    -0.0100 + 0.0300i
Zin =
    5.0000e+001 +3.0000e+002i
U6 =
    -0.5000 + 1.5000i
Ku =
    -0.0500 + 0.1500i
```

