Phasor Diagram

Example

For the circuit shown below with using MATLAB plot the phasor diagram and find the complex power \boldsymbol{S}, the average power P, the reactive power Q and the power factor $\cos \varphi$ when $R=5 \Omega, L=20 \mathrm{mH}, C=400 \mu \mathrm{~F}$ and $u_{\mathrm{S}}(t)=100 \sin \left(314 t+20^{\circ}\right) \mathrm{V}$.

RLC Circuit

Solution

Using complex frequency representation, for the voltage source $u_{\mathrm{S}}(t)$ the phasor is $\boldsymbol{U}_{\mathbf{S}}=100 \mathrm{e}^{j 20^{\circ}}=100 \angle 20^{\circ}$. For the components R, L, C the complex impedances are

$$
\begin{aligned}
& Z_{\mathbf{R}}=R=5 \Omega \\
& Z_{\mathbf{L}}=j \omega L=j 314 \cdot 0.020=j 6.28=6.28 \angle 90^{\circ} \Omega \\
& \begin{aligned}
Z_{\mathrm{C}} & =1 /(j \omega C)=1 /\left(j 314 \cdot 400 \cdot 10^{-6}\right)=1 /(j 0.1256)= \\
\quad & =-j 7.9618=7.9618 \angle-90^{\circ} \Omega
\end{aligned}
\end{aligned}
$$

The total complex impedance is

$$
\boldsymbol{Z}=\boldsymbol{Z}_{\mathbf{R}}+\boldsymbol{Z}_{\mathbf{L}}+\boldsymbol{Z}_{\mathrm{C}}=5-j 1.6818=5.2753 \angle-18.59^{\circ} \Omega
$$

The current is

$$
\boldsymbol{I}=\frac{\boldsymbol{U}_{\mathrm{S}}}{\boldsymbol{Z}}=\frac{100 \angle 20^{\circ}}{5.275 \angle-18.57^{\circ}}=18.9564 \angle 38.59^{\circ} \mathrm{A}
$$

For the components R, L, C the voltages are

$$
\begin{aligned}
& \boldsymbol{U}_{\mathrm{R}}=\boldsymbol{Z}_{\mathrm{R}} \boldsymbol{I}=94.782 \angle 38.59^{\circ} \mathrm{V} \\
& \boldsymbol{U}_{\mathrm{L}}=\boldsymbol{Z}_{\mathrm{L}} \boldsymbol{I}=119.0462 \angle 128.59^{\circ} \mathrm{V} \\
& \boldsymbol{U}_{\mathrm{C}}=\boldsymbol{Z}_{\mathrm{C}} \boldsymbol{I}=150.9268 \angle-51.41^{\circ} \mathrm{V}
\end{aligned}
$$

The power factor is

$$
\cos \varphi=\cos \left(\alpha_{\mathrm{U}}-\alpha_{\mathrm{I}}\right)=\cos \left(20^{\circ}-38.59^{\circ}\right)=\cos \left(-18.59^{\circ}\right)=0.948
$$

where α_{U} and α_{I} are the phase angles of the $\boldsymbol{U}_{\mathbf{S}}$ and \boldsymbol{I} phasors

The complex power is

$$
\boldsymbol{S}=\boldsymbol{U}_{\mathbf{R M S}} \boldsymbol{I}_{\mathbf{R M S}}{ }^{*}=P+j Q \quad[\mathrm{VA}]
$$

where $\boldsymbol{U}_{\mathbf{R M S}}$ and $\boldsymbol{I}_{\text {RMS }}$ are the phasors of effective values of the voltage $\boldsymbol{U}_{\mathbf{S}}$ and current I

$$
\begin{aligned}
& \boldsymbol{U}_{\mathrm{RMS}}=U_{\mathrm{RMS}} \angle \alpha_{\mathrm{U}}=\frac{U_{\mathrm{m}}}{\sqrt{2}} \angle \alpha_{\mathrm{U}} \\
& \boldsymbol{I}_{\mathrm{RMS}}=I_{\mathrm{RMS}} \angle \alpha_{\mathrm{I}}=\frac{I_{\mathrm{m}}}{\sqrt{2}} \angle \alpha_{\mathrm{I}}
\end{aligned}
$$

and $\boldsymbol{I}_{\mathbf{R M S}}{ }^{*}$ is the conjugate of $\boldsymbol{I}_{\mathbf{R M S}}$

$$
\boldsymbol{I}_{\mathbf{R M S}}^{*}=\frac{I_{\mathrm{m}}}{\sqrt{2}} \angle-\alpha_{\mathrm{I}}
$$

Thus

$$
\boldsymbol{S}=\frac{U_{\mathrm{m}}}{\sqrt{2}} \angle \alpha_{\mathrm{U}} \cdot \frac{I_{\mathrm{m}}}{\sqrt{2}} \angle-\alpha_{\mathrm{I}}=947.82 \angle-18.59^{\circ}=898.36-j 302.17 \mathrm{VA}
$$

The average power is the real part of $\boldsymbol{S} \quad \Rightarrow \quad P=898.36 \mathrm{~W}$
The reactive power is the imaginary part of $\boldsymbol{S} \Rightarrow \quad Q=-302.17 \mathrm{VAr}$

Another way to get these powers is

$$
\begin{aligned}
& P=U_{\mathrm{RMS}} I_{\mathrm{RMS}} \cos \left(\alpha_{\mathrm{U}}-\alpha_{\mathrm{I}}\right)=U_{\mathrm{RMS}} I_{\mathrm{RMS}} \cos \varphi \\
& Q=U_{\mathrm{RMS}} I_{\mathrm{RMS}} \sin \left(\alpha_{\mathrm{U}}-\alpha_{\mathrm{I}}\right)
\end{aligned}
$$

where $U_{\mathrm{RMS}}=\frac{U_{\mathrm{m}}}{\sqrt{2}}$ and $I_{\mathrm{RMS}}=\frac{I_{\mathrm{m}}}{\sqrt{2}}$

The MATLAB program for solving this task is

MATLAB Script

```
clear; clc;
% this program computes variables of RLC circuit
% and plots the phasor diagram
R = 5; % ohms
L = 20e-3; % H
C=400e-6; % F
us_max = 100; % v
us_ang = 20; % angle in degrees
w = 314;
% complex representation of the source voltage
Us=us_max*exp(j*us_ang*pi/180);
% complex impedances
ZR=R; ZL=j*W*L; ZC=1/(j*W*C); Z=ZR+ZL+ZC;
% current and voltages
I=Us/Z; UR=ZR*I; UL=ZL*I; UC=ZC*I;
% RMS phasors
U_RMS=Us/sqrt(2); I_RMS=I/sqrt(2);
disp('The complex power is'); S=U_RMS*Conj(I_RMS)
disp('The average power is'); P=real(S)
disp('The reactive power is'); Q=imag(S)
disp('The power factor is'); pf=cos(angle(S))
% phasor diagram
line([0 real(UR)],[0 imag(UR)],'marker','>');
text(1.05*real(UR),1.05*imag(UR),'UR');
line([0 real(UL)],[0 imag(UL)],'marker','>');
text(1.05*real(UL),1.05*imag(UL),'UL');
line([0 real(UC)],[0 imag(UC)],'marker','>');
text(1.05*real(UC),1.05*imag(UC),'UC');
line([0 real(Us)],[0 imag(Us)],'marker','>');
text(1.05*real(Us),1.05*imag(Us),'Us');
line([0 real(I)],[0 imag(I)],'marker','+','color','red');
text(real(I),2*imag(I),'I');
axis(1.5*us max*[-1 1 -1 1]);
xlabel('Re'); ylabel('Im');
grid on; axis square;
```

The results obtained from MATLAB are

```
The complex power is
S =
    8.9836e+002-3.0217e+002i
The average power is
P =
    898.3630
The reactive power is
Q =
    -302.1704
The power factor is
pf =
```

The phasor diagram obtained from MATLAB is

