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1
Introduction to MATLAB

1.1 Introduction to the technical computing

MATLAB is a high-level language and interactive environment for numerical computation,
visualization, and programming. Using MATLAB, you can analyse data, develop algo-
rithms, and create models and applications. The language, tools and built-in math functions
give you possibilities to explore multiple approaches and reach a solution faster than with
spreadsheets or traditional programming languages.

You can use MATLAB for a wide range of applications, including signal processing and
communications, image and video processing, control systems, test and measurement.

There are many alternative products such as Octave, Freemat, Scilab, NCLab, Python
(with package NumPy, SciPy and MatPlotLib) and other.

1.2 Engineering tools – MATLAB and alternatives

1.2.1 What is MATLAB?

MATLAB is a shortcut from Matrix Laboratory. The Mathworks Inc. [1] developed this
software primarily to solve linear equation systems due to linear matrixes.

The MATLAB is environmental system and programming language too. It is mathemati-
cal oriented computer system based on solving many problems from mathematic and other
research section. It is interactive system, Fig. 1.1.

In a short time this system stays standard for technician calculating and engineering.
The base of this program is very similar to C language. Both programs have many similar
algorithms and principles. Core of MATLAB is written in C language. Although the C
language is compiler, MATLAB is designed like interpret.

MATLAB is not only programming language for technical calculation, but MATLAB is
comprehensive math based tool for solving mathematics expression in branch of mathe-
matics, engineering, economy, biology, chemistry etc. Its possible to say, that MATLAB is a
philosophy [2].

1.2.2 Alternative product

MATLAB is a standard in category of mathematics languages. But its complexity and its
transcendence in this programming league defined its high price. Due this fact exist many
alternatives for this product with a similar philosophy and similar efficiency. One of the
best product of MATLAB style is Octave system with graphical frontend QT Octave, Fig 1.2
and FreeMat. These open source products are distributed under GNU public license.
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1.3. MATLAB BASICS

Figure 1.1: MATLAB logo and reprint screen from application site Mathworks Inc.

Figure 1.2: Reprint of the screen from QT Octave

There exist other free to use products with similar functionality, for example SciLab,
SageMath and others, but each from these groups has some special limitation in the relation
to the original MATLAB.

1.3 MATLAB basics

The default MATLAB environment has three basic windows. The largest window (from
these three) is for the right half of screen (default in right side of LCD screen). This window
has name Command Window. This window is especially important for beginners because
all commands are written just to the command line of this window. Primary function of
this window is working desktop calculator style with hand input and like numeric output
area. This windows rearrangement is typical for older version, in our case for version signed
R2007a/b. Newest versions has other windows rearrangement, typically into five windows,
but additional function has only second functionality from older one. The main window
in all versions is typically Workspace and has the majority positions on the center positions
on the screen. But the function is the same like in previous versions.
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1.3. MATLAB BASICS

The left half of screen is divided into two smaller widows. Upper left is Current Directory
or Workspace. All these information are valid for version R2007a/b. In newest versions
are these windows in the left, respectively right columns of the screen.

Current Directory shows the actual working directory of MATLAB. It is important for
saving our temporary files or scripts or function (in future). Current directory is directory
for storing data, m-files etc. This directory can be set by user, it depends on the location of
the user’s program. Indication of the current settings of the current working directory is on
the small box on the top of the menu bar on the MATLAB primary screen, Fig. 1.3.

Figure 1.3: Setting up the Current directory and its setting in Matlab

The Workspace window is very useful. This window shows the currently defined vari-
ables, constants and functions. It will be detailed explained in next lessons. Each defined
variable (i.e. commonly – object) has in this window small yellow symbol, the most usually
small square (for usually numeric variables and constant). For the functions is this block
in the small yellow cube style and other types of variables have another symbols. The last
window with the name Command History shows us the flow of used commands from our
lecture. It is possible to click on selected command from history for its activating. It is very
useful in learning and self studying process.

These windows are possible change and close, but for beginners it is not a good idea. If
you make some changes and if you want to return to the default style, you must select (from
the top pull-down menu) path Desktop - Desktop layout and choose menu item Default
settings. This path is possible to use in all version of MATLAB, but many of the programmers
or students prefer the other windows rearrangement than default.

The next windows like output graphic window or Help window or Editor window are
available from the many parts of MATLAB and in the right time we will notice about it.

The last part of screen is menu bar on top of screen. It has the similar shape like other
Windows programs. In all versions of MATLAB is similar, but the newest version has another
icon rearrangement, Fig. 1.5.

Figure 1.4: Detailed view for Menu items

Menu items

Fig. 1.4 depicts the detailed view for Menu items.
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1.3. MATLAB BASICS

File - menu item of many Windows programs with the similar functionality. New for
creating new program or script, Import for importing one, Preferences for setting the pref-
erences of all MATLAB system including the fonts and many other).

Desktop - important function for setting the changes of windows to the standard or
default style is path Desktop - Desktop Layout - Default.

Help - the most important item from menu bar. It is the best starting point of MATLAB
self-study. In Demos is possible to find a lot of interesting scripts and functions. Function
HELP has in MATLAB several forms. The main HELP is like library for all MATLAB envi-
ronments. But in MATLAB is possible to call help with the relation with specific command
for detailed information about this command (and for example detailed syntax and many
more) - i.e. the context help.

For the self study is very important function demos which demonstrate the commands’
possibilities in the illustrative example.
Demos - MATLAB - Mathematics - Basic Matrix Operations and next

Figure 1.5: New ribbon components’ arrangements in version R2012

Command Window

Command window is shown in Fig. 1.5 in the middle bottom. Work in this window has the
desktop calculator mode. For programmers - it is typical scripting language (Python, Lua)
style of work (sometimes called interpret(er) style). User types your code on the keyboard
and after Enter key pressing, MATLAB evaluates and shows the result. Numerical input by
manual typing is not very useful in case of larger tasks; we use it only for beginner’s lessons
or for home self study.
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1.3. MATLAB BASICS

In this Command window, we will teach and make standalone test some simple com-
mands for first part of beginner lecture.

Basic commands

Following commands we will test (by manual typing) in the largest window - Command
window (type it and see what happens in Command Window).

Basic command for the first orientation in MATLAB

1. clc - most important command - remove all in this window (including error messages)

2. clear - remove all variables from memory (including their name and type)

3. who - list of used variables in memory (simple shape)

4. whos - list of used variables in memory in detailed form (size and memory)

5. what - list of M-files in current directory (described on Current Directory window)

6. exit - end of MATLAB session and escape from this program

7. quite - the same like exit

8. demo - run demo session (the same like from menu bar)

9. bench - starting program for testing power of your computer (benching)

10. help + next command - for example help elfun - detailed list elementary fc.

11. ver - returns MATLAB version with detailed summary of toolboxes.

12. !dir - provides commands of operating system shell, in this case it is Windows shell
command dir - listing of files and folders in the current directory (in the Linux OS the
command !ls has a similar functionality)

Very interesting command is diary. This command makes complete dump of used
command and functions with results of mathematical operations into the text file. It is like
a notepad. It is very useful for first lectures, like this one.

Write into Command Window and press ENTER
diary today.txt
diary on
Now is setting-up the file with the same content like Command Window. This file is stored
in current working directory defined by Current Directory.

Please see the special using of the instruction help. List of the basic operation over
the real variables is possible to obtain using help elfun. List of polynomial functions is
accessible via commands help polyfun and the same in matrix linear algebra via com-
mand help elmat. Due these commands is possible access many different command with
further syntax and examples. It is very valuable help in the self study and in learning MAT-
LAB.
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1.4. SYNTAX AND OPERATIONAL PRINCIPLES

1.4 Syntax and operational principles

Case sensitivity is property known from common programming languages like C, C++,
Java etc. Software can differentiate between upper and lower cases in names of the vari-
ables, functions and commands.

MATLAB is a case sensitive. In praxis this sentence means that (for example in name
of variable) variable a isn’t equal to A (a 6= A). It is very important and many people make
in this command many errors. Very useful consensus in creation names for variables is that
names of vectors and matrices are from upper cases and other names for example scalar
variables are created in lower case.

MATLAB syntax differs for issuing commands and for calling functions. In many cases,
you can use either of the two syntaxes in commands and in function calls.

You are issuing a command when you tell MATLAB to do something. You might use a
function name in the command and possibly a few switches or modifiers, usually expressed
in the form of character strings. But, in most cases, there is no need to pass data such as
numeric values or variables in a command. There is also no expectation that the command
returns any output value.

A few examples of MATLAB commands are shown here. Note that MATLAB passes only
string arguments and does not return any output:

Examples

whos

clear

format long e

a = 5; b = 6; c = 7;
save mydata.mat a b c

A function called in this syntax consists of the function name followed by one or more
arguments separated by commas and enclosed in parentheses:

functionname(arg1, arg2, ..., argn)

You can assign the output of the function to one or more output values. When assigning
to more than one output variable, separate the variables by commas or spaces and enclose
them in square brackets []:

out = functionname(arg1, arg2, ..., argn);

[out1,out2,...,outn] = functionname(arg1, arg2, ..., argn);

Examples

plot([0:0.1:2*pi],sin(0:0.1:2*pi))

size([1,2,3;4,5,6])

s = size([1,2,3;4,5,6])

[rows, columns] = size([1,2,3;4,5,6])
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1.5. MATLAB TOOLBOXES

Notice

The semicolon can be used to construct arrays, suppress output from a MATLAB command,
or to separate commands entered on the same line.

1.5 MATLAB toolboxes

Toolboxes are groups of additional special functions which are used for solving certain
problems from many segments of engineering calculations. Some toolboxes affects the
basic functionality of MATLAB. It is for example the toolbox for working with symbolic
algebra. List of installed toolboxes we can obtain calling command ver (like version of
MATLAB installation).

1.6 Test of basic commands and standalone works with basic
operators

1. What is it case sensitivity?

2. What is toolbox?

3. Try the calculator function in command line of MATLAB Command windows or of
some alternative product. Write, for example:

1+2
6*(120-78)
sin(0)

etc.
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2
Matrix oriented commands, linear algebra

2.1 Basic mathematical operators and types of variables

Notice

Before starting our work in this large Command Window, it is necessary to know, that the
style of work is the same like on the usual desktop calculator (that means interpreter style).
It is similar to the programming language like Python, Lua or Shell scripts and different to
languages like C, C++ or Java.

2.1.1 Allocation

Allocation - that means operation that join name with the value to the one expression
(variable definition). For single variable is the same like in other languages. Very simple:

A = 5

And when we try to test the command whos now, in Command Window appear the
detail information including size of variable in bytes, class and more. In the Workspace
window appears new symbol in style of the yellow square with cross. This is symbol for
usual numeric variable.

When we write in the next command a = 5, we have in this time two variables with
names A and a, so it is necessary take care about case sensitivity!

When we type in Command Window next sentence, we obtain string variables (class
char). After testing this variable using the command whos, we obtain next information.

B = ’text’

In case of string variable is shape in the Workspace window other than previous. The
small yellow square is the same, but inside this yellow box is symbol for text value, small
abc symbols.

For complex values it is very similar. For example definition of complex number C:

C = 2 + i

In case of complex variables apply MATLAB the same operations rules like on usual
numeric variables. The differences exist only in case complex matrices and some special
functions like conjugated matrices. This problem will be discussed in the next text.

The variable ans is the shortcut for answer and in under this variable name is stored
result of the latest previous operation including inversion and similar other simple function.
Try these commands and look at the list of variables:

1 + 1
a = 1 + 1
whos

9



2.1. BASIC MATHEMATICAL OPERATORS AND TYPES OF VARIABLES

Notice

Try examples. When necessary, it is good idea for detailed information about definition
range and many more parameters use help and certain function.

2.1.2 Predefined constants

ans is variable with last result (ans like answer), the variable ans is created automatically
when expressions are not assigned to anything else
eps is accuracy (respect computer and software possibilities - more help eps)
realmin is the smallest positive normalized double precision floating point number on this
computer.
realmax is the largest double precision floating point number representable on this com-
puter.
pi is 3.1415926535897... i.e. "π"
i, j are complex unit, i.e. sqrt(-1), it is not good idea rename it or use like index!
Inf is infinity, result of certain mathematical operations (for example division 1/0)
NaN is Not-a-Number, result of certain mathematical operation (for example 0/0)
clock is current date and time as date vector (in inversion order)
date is current date as date string (from computer memory)

2.1.3 Arithmetic operators

Arithmetic operators for matrix and array arithmetic:

A + B array sumation (element by element),

A − B array subtraction (element by element),

A ∗ B matrix multiplication,

A .∗ B array multiplication (element by element),

A / B matrix division, A is divided by B from right,

A ./ B array division, A is divided by B from right (element by element),

A \ B matrix division, B is divided by A from left,

A .\ B array division, B is divided by A from left (element by element),

A ∧ n matrix power, where n is a scalar number,

A .∧ n array power (element by element), where n is a scalar number,

A ′ complex conjugated transpose of matrix (all complex elements has been replaced by
conjugated complex numbers),

A .′ transpose of matrix (complex elements remain unchanged).

MATLAB software has two different types of arithmetic operations. Matrix arithmetic
operations * / \ ^ are defined by the rules of linear algebra. Array arithmetic operations +
- .* ./ .\ .^ are carried out element by element, and can be used with multidimensional
arrays. The dot character (.) distinguishes the array operations (element by element) from
the matrix operations. However, since the matrix and array operations are the same for
addition and subtraction, the character pairs .+ and .- are not used.
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2.1. BASIC MATHEMATICAL OPERATORS AND TYPES OF VARIABLES

2.1.4 Relational operations

There are defined relational operators <, >, <=, >=, == and ∼= in MATLAB. Meanings
of these operators are

A < B A is less than B,

A > B A is greater than B,

A <= B A is less than or equal to B,

A >= B A greater than or equal to B,

A == B A is equal to B,

A ∼= B A is not equal to B.

Relational operators perform element-by-element comparisons between two arrays.
They return a logical array of the same size, with elements set to logical 1 (true) where
the relation is true, and elements set to logical 0 (false) where it is not.

The operators <, >, <= and >= use only the real part of their operands for the com-
parison. The operators , == and ∼= test both real and imaginary parts.

Attention

The difference between = and ==

= means assignment of a value to a variable,

== means equal to.

Examples

~0
ans = 1

~1
ans = 0

~5
ans = 0

a=7; b=8;

a~=b
ans =

1

a>=b
ans =

0

A=magic(3)
A =

8 1 6
3 5 7
4 9 2
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A>4
ans =

1 0 1
0 1 1
0 1 0

Attention

• Result of relation between scalars is a scalar (value 1 – means true or value 0 – means
false).

• Result of relation between matrices (with same size) is a relation matrix of 0 and 1
as the result of comparison of elements at the same coordinates.

• Result of relation between two matrices is whole true, if all elements of relation matrix
are 1 (true).

Useful testing functions

any(A) at least one non-zero element at A columns,

all(A) all non-zero elements at A columns.

2.1.5 Logical operations

Relational operations can be joined by logical operators. There are two types of logical
operators

• elementwise

& means logical and (true are all together),

| means logical or (true is at least one),

∼ means logical not,

• short-circuit

&& means logical and (true are all together),

|| means logical or (true is at least one),

Examples

(3<5)&(4<6)
ans = 1

(3<5)&(4>6)
ans = 0

(3>5)&(4>6)
ans = 0

(3>5)|(4>6)
ans = 0

~(3<5)
ans =0

12
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(~(3<5))&(4<6)
ans = 0

2.2 Basic commands and basic operations instructions

2.2.1 Formatting the numerical output (for visual form on the screen)

Format command
This instruction set the visible output numeric format. It is very important especially in
floating point variables and numbers. This setting the format doesn’t affect for internal
computation and internal numeric precisions. This is only for visual expression in the Com-
mand Window.
format short - only 4 number after comma
format long - 15 digits in double precision expression and 7 digits for single precision.
format hex - hexadecimal format
format bank - fixed format for dollars and cents
format rat - expression values like ration of small integers
For many more possibilities, details and certain syntax see after typing help format.

Before starting definition of matrices, it is necessary say a lot of special marks used for
these operations.

Notice

Next information are valid not only for matrices, but for vectors too. From mathematical
point of view is vector only special type of matrix with size 1 x n (n is number of elements).

2.2.2 Parentheses

In MATLAB (in alternative programs often too) we have three types of parentheses. Differ-
ences between these three types of parentheses is in the method for theirs using.

[ ] - brackets (for vectors and matrices definition)
( ) - classical parentheses (for mathematical operations, indexes, arguments and more)
{ } - braces (useful for special operation with cells, text arguments and more)
All parentheses must be paired!!!

2.2.3 Separators

Separators are used for separating of indexes, elements and for separating whole structures
like vectors in the matrices. We have three types of separators named comma, semicolon
and colon with different function.

: - colon (creator of vectors, array subscripting, separation of range borders, alternate
symbol for matrix structures, and for-loop iterators)

; - semicolon (the end of row vectors in matrix, separation of commands, suppress
output from a MATLAB command, and more)

, - comma (vector and matrix element separator, index separator)
Each from these separators has the secondary functionality. For example semicolon is

used for separating commands in the program script and for breaking-up the program line
in the editor. Colon is used for separating the elements of the range vector. And comma is
used in many cases for separating indexes in the parentheses and many more.

13
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2.2.4 Definition of vectors

Linearly spaced vectors

Row vector

RV = [1, 2, 3, 4, 5, 6, 7, 8, 9]

or

[1␣2␣3␣4␣5␣6␣7␣8␣9]

Like vector element separator is used in this case comma. Like the second possibility is
using the space, and this is due the pushing key space for separating values. This variant
is not recommended due possibility of mistake with unwished push this key. In originally
material from UK or USA comma is used very often.

Column vector

CV = [1; 2; 3; 4; 5; 6; 7; 8; 9]

Like vector element separator is used semicolon. This separator is used in case separa-
tion of row in matrix. But in the case of column vector it is typical using in the vector.

For transpose between column and row vector forms (mathematically named transpo-
sition) are used symbol of apostrophe. That means in you want make column vector from
row vector, use apostrophe (symbol for transposition).

CV = RV.’

Using colon

The colon operator uses the following rules to create regularly spaced vectors for scalar
values m, n, and p:
m:n is the same as [m,m+1,m+2,...,n], or empty [] when m > n.
m:p:n is the same as [m,m+p,m+2p, ...,m+r*p], where r = fix((n-m)/p). This syntax
returns an empty [] matrix when p == 0, p > 0 and m > n, or p < 0 and m < n.

Example

The following command create the vector from 0 to 0.5 with step 0.1 (it is possible use
normal parentheses or without parentheses)

x = [0:0.1:0.5]
x =

0 0.1000 0.2000 0.3000 0.4000 0.5000

To create the vector from 1 to 5 with step 1 (incremental), use command:

y = [1 : 5]
y =

1 2 3 4 5

If the increment is one, it is not necessary to write them. Compare:

[1 : 1 : 5]
ans =

1 2 3 4 5
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In the following example, we create the vector from 0 to 7 with step 2:

[0 : 2 : 7]
ans =

0 2 4 6

The end of this vector is 6 and this vector has four elements, because:
first element: 0
second element: 0+ 1 ∗ 2= 2,
third element: 0+ 2 ∗ 2= 4,
fourth element: 0+ 3 ∗ 2= 6,
followed by: 0+ 4 ∗ 2= 8
6< 7 and 8> 7, 6 is the last number before 7, which satisfies the specifications (step 2).

If we create vector with a positive step, the start must be less than the end of vector,
otherwise there is an empty matrix.

[5:1]
ans =

Empty matrix: 1-by-0

Definition of the vector containing decreasing values of elements has the form:

z = [10 : -1 : 1]
z =

10 9 8 7 6 5 4 3 2 1

r = [8 : -2 : 0]
r =

8 6 4 2 0

s = [15: -3 : 4]
s =

15 12 9 6

Decremental step must be written in any case. If the vector is created with a negative
step, the value of starting vector element must be greater than the value of the last vector
element, otherwise the command returns an empty matrix.

[4:-1:8]
ans =

Empty matrix: 1-by-0

If we want make linear vector t from elements 0, 1,2, 3, ..., n, we may write element
using this command t = 0:n;

If we will make some vector with the certain number of equidistant elements, we may
use the function for linear row - linspace with the syntax:

linspace(a, b) generates a row vector of 100 linearly equally spaced points between
a and b.

linspace(a, b,n) generates n linearly equally spaced points between a and b. For
n< 2, linspace(a, b,n) returns b.

Example

VECTOR = linspace(0, 100, 10)
VECTOR =
Columns 1 through 8
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0 11.1111 22.2222 33.3333 44.4444 55.5556 66.6667 77.7778
Columns 9 through 10
88.8889 100.0000

DV = linspace(20, -4, 5)
DV =

20 14 8 2 -4

Notice

Command linspace is useful for vector construction like our previous command with
colons. But if we want to obtain the same numbers, we must type it in the right shape:
The vector created using 1:3 is the same as linspace(1,3,3) !

Example

a = 0 : 1 : 7
a =

0 1 2 3 4 5 6 7

a = linspace(0,7,8)
a =

0 1 2 3 4 5 6 7

Logarithmically spaced vectors

The command linspace(1, 100, 10) makes vector from 1 to 100 with 10 linearly
equally spaced elements. If we want make logarithmically spaced vector, use command
logspace(0, 2, 10) when the first parameter defined 100 second parameter targeting num-
ber 102 and the third parameter defined number of elements.

logspace(a, b) generates a row vector of 50 logarithmically equally spaced points
between decades 10a and 10b. If b is pi, then the points are between 10a and pi.

logspace(a, b, n) generates n logarithmically equally spaced points between 10a

and 10b. For n < 2, logspace returns 10b.

Example

linspace(1, 100, 10)
ans =

1 12 23 34 45 56 67 78 89 100

logspace(0,2,10)
ans =
Columns 1 through 8
1.0000 1.6681 2.7826 4.6416 7.7426 12.9155 21.5443 35.9381

Columns 9 through 10
59.9484 100.0000

See also the following results:

linspace(1, 1000, 4)
ans =

1 334 667 1000

logspace(0, 3, 4)
ans =

1 10 100 1000
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2.2.5 Definition of matrices

Each matrix has row and column elements sorting into rectangular or square structure. In
the most usual cases of technical computations it is square structures and the name is the
same - square matrices. Exist of course non-square matrices (rectangle) but its consequence
is very small in the usual technical computation. In the next text we will discussed only
square matrices. Some function may change the square shape of matrix for rectangular,
but this is minority appearance. Entering the matrix (definition of the new matrix input)

Example

A = [1, 2, 3; 4, 5, 6; 7, 8, 9]

create this structure, Fig. 2.1:

A =
1 2 3
4 5 6
7 8 9

Figure 2.1: Reprint of the matrix structure from Command Window

That means like border symbols are used brackets. This is important; each type of
parenthesis has its own function. When we input this matrix into MATLAB, in the left
upper window (Workspace) appears new definition symbol of our matrix (yellow square)
with name. This is variable name of this matrix or matrix identifier.

When we click by mouse on the square (in this left upper window - Workspace) appears
in the right window new structure with the name Array editor. In this editor is possible to
change values of this matrix. It is very similar to Microsoft Excel editor with cells.

Structure of matrix

Matrix has own structure. Each element has your own position. It is possible to sign this
position with matrix coordinates or matrix elements indexes.

The most important lines in matrices are rows (horizontal group of elements) and
columns (vertical group of elements). When the number of rows is equal the number of
columns, we say, that the matrix is square matrix. These types of matrix are very use-
ful for computing (for example inversion and translation). Non square matrices are very
problematic for many mathematical operations.
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Important sequence of elements in matrix is diagonal line of elements. Each matrix
has two diagonals. One diagonal matrix (from upper left corner to the right lower corner)
names main and the secondary diagonal in the opposite direction names adjacent (from
upper right corner to the left lower corner).

When the main diagonal contains only number one and the other elements in the matrix
are zeros, we names this matrix like identity or unit matrix. This matrix is possible obtain
like result of certain mathematical operation for example like multiply inversion matrix with
the origin one. But this operation has many restrictive conditions (for example singularity
of input matrix and many more).

Construction of matrix

It is possible to enter each element handy from the main window (Command window).
The more efficiency way is the using M-File editor. This will be containing of next lesson.
Matrices are possible download from external sources too. The next way to the certain
matrix type is generating matrices. For example: matrix construction of the individual
elements

A = [4, 2, 0; 4, 2, 6; 7, 2, 1]

One of vary possibilities of construction of matrices is adding two or more vectors to-
gether into matrix structures.

We have row vectors:

a = [1, 2, 3];
b = [4, 5, 6];
c = [7, 8, 9];

The command MATRIX = [a;b;c] construct new matrix with these elements, the vectors
are separated by semicolons, Fig. 2.2:

MATRIX = [a;b;c]
MATRIX =

1 2 3
4 5 6
7 8 9

The command MATRIX_2 = [a,b,c] construct new vector with these elements, the
vectors are separated by commas:

MATRIX_2 = [a,b,c]
MATRIX_2 =

1 2 3 4 5 6 7 8 9

Notice

The same process us useful in case of column vectors too. In case of column vector is
used like separator symbol comma. We have column vectors (the elements separated by
semicolons):

d = [1; 2; 3];
e = [4; 5; 6];
f = [7; 8; 9];

The command MATRIX_3 = [d,e,f] construct new matrix with these elements, the vec-
tors are separated by commas:
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Figure 2.2: Construction of the matrix from vectors

MATRIX_3 = [d,e,f]
MATRIX_3 =

1 4 7
2 5 8
3 6 9

Example

We have vectors:

k = [1, 3, 5, 7, 9];
l = [1 : 5];
m = linspace(-4, 4, 5);
n = logspace(1, 5, 5);

Is it possible to create a matrix of these vectors k, l, m, n?
Solution

P = [k; l; m; n]

P =

1 3 5 7 9
1 2 3 4 5
-4 -2 0 2 4
10 100 1000 10000 100000
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2.3 Operations with vectors and matrices

2.3.1 Basic matrix operations

The followed matrix A is given

A = [4, 2, 0; 4, 2, 6; 7, 2, 1]
A =

4 2 0
4 2 6
7 2 1

Some basic matrix manipulations and operations for this matrix A in MATLAB are shown
in following text.

• Inversion form of this matrix we obtain using function inv(A), which returns the
inverse matrix only of the square matrix A, a warning message is printed in other
cases.

ans =
-0.2778 -0.0556 0.3333
1.0556 0.1111 -0.6667
-0.1667 0.1667 0

• Transpose forms obtain after using function A’ with one exceptions in the complex
elements. In case the complex elements after making transpose we obtain not the
transpose matrix, but the conjugating matrix (For details, see section 2.4).

ans =
4 4 7
2 2 2
0 6 1

• After using function size(A) will be in the ans variable in this case numbers 3 and
3.

size(A)
ans =

3 3

That means this matrix has 3 rows and 3 columns.

[r,c] = size(A) returns the size of matrix A in separate variables r (number of
rows) and c (number of columns).

[r,c] = size(A)
r =

3
c =

3

m = size(A,dim) returns the size of the dimension of A specified by scalar dim.

m = size(A,1)
m =

3
n = size(A,2)
n =

3
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Example

B=[1, 4, 5; -6, 9, 8]
B =

1 4 5
-6 9 8

[r,c] = size(B)
r =

2
c =

3

k = size(B,1)
k =

2

l = size(B,2)
l =

3

• Length of vector a is obtained using the command length(a). If A is matrix, length(A)
finds the number of elements along the largest dimension of an matrix. It is equiva-
lent to max(size(A)) for non-empty matrices.

a = [1, 6, 4, -2, 3, 3, 5, 4];
length(a) % number of elements of vector a
ans =

8

B=[1, 4, 5; -6, 9, 8];
length(B) % size of matrix A is 2 x 3 (see previous example)
ans =

3

max(size(B))
ans =

3

A = [4, 2, 0; 4, 2, 6; 7, 2, 1];
length(A) % size of matrix A is 3 x 3
ans =

3

max(size(A))
ans =

3

The command max returns the largest elements in vector. Details of max are described
in the following items.

• When you use on the same matrix A function sum(A), you obtain summation of each
column. In this case it will be 15, 6, 7 (results of the summation of each column
from this matrix).

sum(A,dim) sums along the dimension of A specified by scalar dim.

sum(A, 1)
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ans =
15 6 7

sum(A, 2)
ans =

6
12
10

Compare the second result with the following commands.

A’
ans =

4 4 7
2 2 2
0 6 1

sum(A’)
ans =

6 12 10

• Rotation matrix 90 degrees rot90(A) rotates matrix A counterclockwise by 90 de-
grees.

rot90(A)
ans =

0 6 1
2 2 2
4 4 7

rot90(A,k) rotates matrix A counterclockwise by 90 · k degrees, where k is an in-
teger.

rot90(A,2)
ans =

1 2 7
6 2 4
0 2 4

rot90(A,3)
ans =

7 4 4
2 2 2
1 6 0

For example: sum(rot90(A)) - where rot90 is matrix rotation about 90 ◦ counter-
clockwise.

sum(rot90(A))
ans =

6 12 10

Attention

Using matrix transposition A’, different matrix is created than using rotation rot90(A).

• max returns the largest elements in array. If a is a vector, max(a) returns the largest
element in a. If A is a matrix, max(A) treats the columns of A as vectors, returning a
row vector containing the maximum element from each column.
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A = [4, 2, 0; 4, 2, 6; 7, 2, 1]
A =

4 2 0
4 2 6
7 2 1

max(A)
ans =

7 2 6

[m,p] = max(A) finds maximum values and the indices of the maximum values of
A, and returns them in output vectors m and p. If there are several identical maximum
values, the index of the first one found is returned.

[m,p] = max(A)
m =

7 2 6
p =

3 1 2

• min returns smallest elements in array. Description and possibilities of use are similar
to the max.

• diff(A) calculates differences between adjacent elements of A.

If (a) is a vector, then diff(a) returns a vector, one element shorter than (a), of
differences between adjacent elements:

a = [1, 6, 4, -2, 3, 3, 5, 4];
diff(a)
ans =

5 -2 -6 5 0 2 -1

If (A) is a matrix, then diff(A) returns a matrix of row differences:

A = [4, 2, 0; 4, 2, 6; 7, 2, 1]
A =

4 2 0
4 2 6
7 2 1

diff(A)
ans =

0 0 6
3 0 -5

• mean returns average or mean value of array. If A is a matrix, mean(A)s treats the
columns of A as vectors, returning a row vector of mean values.

mean(A)
ans =

5.0000 2.0000 2.3333

• median returns median value of array. If A is a matrix, median(A) treats the columns
of A as vectors, returning a row vector of median values.

median(A)
ans =

4 2 1
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• std returns standard deviation. If A is a matrix, std(A) returns a row vector con-
taining the standard deviation of the elements of each column of A.

std(A)
ans =

1.7321 0 3.2146

• sort returns sort array elements in ascending or descending order, the specified di-
rection is depending on the value of mode (’ascend’ – ascending order (default) or
’descend’ – descending order). If A is a matrix, sort(A) sorts each column of A.

sort(A)
ans =

4 2 0
4 2 1
7 2 6

sort(A, ’descend’)
ans =

7 2 6
4 2 1
4 2 0

• Function diag(A) makes vector from elements from main diagonal matrix A. In our
example it will be 4, 2, 1. When use commands diag(diag(A)) obtain matrix
with the same diagonal and other elements are zeros.

A = [4, 2, 0; 4, 2, 6; 7, 2, 1];
diag(A)
ans =

4
2
1

diag(diag(A))
ans =

4 0 0
0 2 0
0 0 1

Notice

In opposite side, when we use command diag(a), where a is vector (row or column
- it is no matter) - we obtain matrix full of zeros with elements on the main diagonal
identical with the elements of original vector a.

a = [1,3];
diag(a)
ans =

1 0
0 3

Results from this operation storing in the variable ans are again matrices of vectors.
That means, these results are possible to allocate and use like normal next variable (or
vector and matrix of course).

There are many other functions for matrix manipulations and operations with matrices,
for more information see help elmat.
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2.3.2 Indexing of matrix elements

Special instructions for selection some structures (row or column) from matrix.
When is necessary choose only one element, we must input his coordinates, for example

second element in third row: A (3, 2) Like the first parameter is number of row and
second parameter is number of column.

Example

A = [4, 2, 0; 4, 2, 6; 7, 2, 1]
A =

4 2 0
4 2 6
7 2 1

A(3,2)
ans =

2

A(2,3)
ans =

6

Colon symbol

For example, if we want select m-th row from matrix A, we use: A (m, :). This operation
has only one condition - the number of rows in the matrix A must be equal or greater than
m!

Example

A(2, :)
ans =

4 2 6

If we want extract n-th column from matrix A, we must write other command A(:, n).
This operation has only one condition - the number of columns in the matrix Amust be equal
or greater than n.

Example

A(:, 1)
ans =

4
4
7

That means the colon is in these cases very important symbol for selecting whole struc-
ture from matrix. If we want select row, colon is on the second position and if we have
select column, we must give colon on the first position.

Example

We have matrix M with structure 4 x 4
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M=[1,2,3,4;4,3,2,-1;5,6,7,8;9,0,-5,7]
M =

1 2 3 4
4 3 2 -1
5 6 7 8
9 0 -5 7

M (2, :) % second row from M
ans =

4 3 2 -1

M (:, 2) % second column from M
ans =

2
3
6
0

The most interesting situation begins when we want to make more difficult changes, for
example, if we want to extract or change rows into matrix or make changes in the columns.

This is similar as creating of vectors using colon. We obtain sub-matrices and vectors,
which were rows or columns.

If we want to return second and third rows, we use the command:

M(2:3, : )

If we want to return second and third columns, we use the command:

M(: , 2:3)
ans =

2 3
3 2
6 7
0 -5

If we want to return second and third rows in reverse order, we use the command:

M(3:-1:2, : )
ans =

5 6 7 8
4 3 2 -1

If we want to return second and third columns in reverse order, we use the command:

M(: , 3:-1:2)
ans =

3 2
2 3
7 6
-5 0

If we want to return the first, second and fourth rows, we use the command:

M([1, 2, 4], :)
ans =

1 2 3 4
4 3 2 -1
9 0 -5 7

If we want to return the first, third and fourth column, we use the command:
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M( : ,[1, 3, 4])
ans =

1 3 4
4 2 -1
5 7 8
9 -5 7

The command end can serve as the last index in an indexing of vectors and matrix. If we
want to return the last rows, we use the command:

M(end, :)
ans =

9 0 -5 7

If we want to return the first and last columns, we use the command:

M(:, [1,end])
ans =

1 4
4 -1
5 8
9 7

Different parts of the matrix M are obtained using the following commands:

M(2:3, 2:3)
ans =

3 2
6 7

M(2:3, 2:end)
ans =

3 2 -1
6 7 8

M(2:end, 1:3)
ans =

4 3 2
5 6 7
9 0 -5

M(3:-1:1, 3:-1:1) % rows and columns in reverse order
ans =

7 6 5
2 3 4
3 2 1

And like the most beautiful command try this:

M(end:-1:1, end:-1:1)

This is totally changing the order of rows and columns of whole matrix.

ans =
7 -5 0 9
8 7 6 5
-1 2 3 4
4 3 2 1

We can refer to the elements of a MATLAB matrix with a single subscript, M(k). MATLAB
stores matrices and arrays not in the shape that they appear when displayed in the MATLAB
Command Window, but as a single column of elements. This single column is composed of
all of the columns from the matrix, each appended to the last.

So, matrix M
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M=[1,2,3,4;4,3,2,-1;5,6,7,8;9,0,-5,7]
M =

1 2 3 4
4 3 2 -1
5 6 7 8
9 0 -5 7

is actually stored in memory as the sequence

1, 4, 5, 9, 2, 3, 6, 0, 3, 2, 7, -5, 4, -1, 8, 7

The element at row 3, column 2 of matrix M (value = 6) can also be identified as element
7 in the actual storage sequence. To access this element, you have a choice of using the
standard M(3,2) syntax, or you can use M(6), which is referred to as linear indexing.

Example

M(3,2) % standard indexing
ans =

6

M(7) % linear indexing
ans =

6

M(2,4) % standard indexing
ans =

-1

M(14) % linear indexing
ans =

-1

Vectors are matrices with one row or one column. The same rules apply for indexing
vectors.

Example

We have the row vector v:

v=[1, 5, 7, 8, -3, 6, 9, 2, 4];

v(1,3) % the element at row 1, column 3 of vector v
ans =

7

v(3) % the third element in the vector v
ans = % Compare with the previous result!

7

Due to the linear indexing can be written the actual sequence of element in the vector as
the index.

v(1) % the first element in the vector v
ans =

1

v(5) % the fifth element in the vector v
ans =
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-3

v(7) % the seventh element in the vector v
ans =

9

v(4) % the fourth element in the vector v
ans =

8

v(end) % the last element in the vector v
ans =

4

We have the column vector w:

w = [5; 0; 7; 4]
w =

5
0
7
4

w(2,1) % the element at row 2, column 1 of vector w
ans =

0

w(2) % the second element in the vector w
ans = % Compare with the previous result!

0

w(3) % the third element in the vector w
ans =

7

w(end) % the last element in the vector w
ans =

4

The replacement of element of vectors and matrices is performed by assigning of an-
other element to the appropriate position.

The replacement of fifth element in the vector v by number 30:

v=[1, 5, 7, 8, -3, 6, 9, 2, 4];
v(5) = 30
v =

1 5 7 8 30 6 9 2 4

The replacement of the element in the fourth line in 2nd column of matrix M by num-
ber 10

M = [1,2,3,4;4,3,2,-1;5,6,7,8;9,0,-5,7];
M(4,2) = 10
M =

1 2 3 4
4 3 2 -1
5 6 7 8
9 10 -5 7

The replacement of rows or columns of matrix is performed by assigning of another
vector with the corresponding number of elements.

The replacement of fourth column of matrix M by vector w:
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w = [5; 0; 7; 4]; % column vector
M(:,4) = w
M =

1 2 3 5
4 3 2 0
5 6 7 7
9 10 -5 4

Deleting of rows or column of the matrix is performed by assigning an empty matrix.
Actual size of the matrix M:

size(M)
ans =

4 4

Deleting of the third row of matrix M:

M(3,:) = []
M =

1 2 3 5
4 3 2 0
9 10 -5 4

Actual size of the matrix M:

size(M)
ans =

3 4

Deleting of the third and fourth column of matrix M:

M(:,3:4) = []
M =

1 2
4 3
9 10

Actual size of the matrix M (original size of the matrix M before deleting was: 4 rows
and 4 columns):

size(M)
ans =

3 2

2.4 Matrix operations and tools

2.4.1 Special types of matrices

• eye - identity unit (main diagonal full of ones other elements equal to zero)

Example

eye(3)
ans =

1 0 0
0 1 0
0 0 1

• zeros - matrix full of zeros (zeros(5) - matrix 5 x 5 full of zeros)
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Example

zeros(2,3)
ans =

0 0 0
0 0 0

• ones - matrix full of ones

Example

ones(2,4)
ans =

1 1 1 1
1 1 1 1

• magic - matrix contains elements having certain unusual properties (sum of row =
sum of column and sum of elements on the main diagonal).

Example

magic(3)
ans =

8 1 6
3 5 7
4 9 2

M=magic(3)
M =

8 1 6
3 5 7
4 9 2

sum(M)
ans =

15 15 15

sum(diag(M))
ans =

15

• pascal - matrix contains the same elements like Pascal triangle (but in square shape)

Example

pascal(5)
ans =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

• hilb - Hilbert matrix is the matrix with elements 1/(m+ n− 1), which is a famous
example of a badly conditioned matrix.
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Example

format rat

hilb(4)
ans =

1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

• rand - matrix containing pseudorandom values from the standard uniform distribu-
tion on the open interval (0-1), Fig. 2.3.

Example

x = rand(1,1000);
y = rand(1,1000);
plot(x,y,’o’)

Figure 2.3: Uniformly distributed pseudorandom numbers on the open interval(0,1)

• randn - matrix containing pseudorandom values drawn from the standard normal
distribution, Fig. 2.4.

Example

xn = randn(1,1000);
yn = randn(1,1000);
plot(xn,yn,’o’)

• diag(A) - vector full of elements from main diagonal matrix A
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Figure 2.4: Normally distributed pseudorandom numbers

Example

A = [4, 2, 0; 4, 2, 6; 7, 2, 1];
diag(A)

ans =

4
2
1

diag(a) - when a is a vector is created a square matrix with elements of a on the
main diagonal a.

Example

a=[1,2,5];
diag(a)

ans =

1 0 0
0 2 0
0 0 5

Other special types of matrices is possible obtain after typing help elmat.

2.4.2 Arithmetical operations with matrices

Matrices are the common variables like simple variables defined by one number. But the
mathematical operations with matrices subjected certain mathematical laws. This is not
the same like the simply scalar variables (for example division on the matrices).
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A = [4, 2, 2; 2, 0, 1; 7, 2, 1]
B = [3, 2, 4; 1, 2, 4; 2, 0, 1]
A =

4 2 2
2 0 1
7 2 1

B =
3 2 4
1 2 4
2 0 1

Multiplication *

Multiplication of matrices is defined in a way that reflects composition of the underlying
linear transformations and allows compact representation of systems of simultaneous linear
equations. The matrix product D = A * B is defined when the column dimension of A is
equal to the row dimension of B, or when one of them is a scalar. If A is m-by-p and B is
p-by-n, their product D is m-by-n.

A * B 6= B * A - basic axiom known from linear algebra
A * B and B * A are in this case matrix operations
Results obtained from MATLAB

D=A*B
D =

18 12 26
8 4 9
25 18 37

F=B*A
F =

44 14 12
36 10 8
15 6 5

Example

Z=[5,-9;3,4;-1,7]

Y= A*Z
Y =

24 -14
9 -11
40 -48

If A is 3-by-3 and Z is 3-by-2, their product Y is 3-by-2.

Attention

Multiplication Z*A cannot be performed. If Z is 3-by-2 and A is 3-by-3, inner matrix dimen-
sions disagree.

Notice

The result multiplication of matrix A with the transposed matrix A.’ is symmetric matrix
about the main diagonal:
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A * A.’
ans =

24 10 34
10 5 15
34 15 54

The result multiplication of matrix A with the identity matrix of the appropriate size is
the same matrix A. The command for generation of identify matrix is eye. For example,
eye(5) generates 5 x 5 matrix.

A * eye(3)
ans =

4 2 2
2 0 1
7 2 1

eye(3) * A
ans =

4 2 2
2 0 1
7 2 1

eye(3) * Z
ans =

5 -9
3 4
-1 7

Z * eye(2)
ans =

5 -9
3 4
-1 7

This is similar to the multiplication of any number by the number 1, for example:

2*1
ans =

2

1*2
ans =

2

Multiplication .*

Array multiplication A .* B is the element-by-element product of the arrays A and B.
A .* B is not the matrix operation. A and B are in this case arrays not matrices. A and B
must have the same size.

Array is the structure very similar to matrix. Differences exist only in the mathematical
operations defined on this structure. All operations on the array are defined in style element
on element. In case multiplication it is multiplication element by element.

A * B 6= A .* B

Example

A .* B
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ans =
12 4 8
2 0 4
14 0 1

B .* A
ans =

12 4 8
2 0 4
14 0 1

Notice

A .* B = B .* A - this multiplication is commutative, this is array multiplication, not
matrices.

This operation is defined. A, B are arrays and this operation multiplies their elements.
That means these elements are elements of arrays and not the ones of the matrix. This is
not the matrix operation! This is very important notice.

Multiplication matrix with scalar is simply. Try to multiply 5 .* A and discuss results.
Operations with the symbol of point we called "dot operation" or array operation. Dot

operations are defined not on the matrices of normal values but on the fields of elements.
The difference between field and matrix is not visible on the first look, but exist in the
mathematical laws defined on these structures.

Array operations are not defined in the linear algebra. But array operations are very
often usable in the case of graphical expressions namely in case 3-dimensional graphs. This
problematic will be discussed later in the section dedicated the 3-dimensional graphs.

Division / and \

Division is very problematic function defined on matrices and linear algebra generally. Not
the each division is possible. But the theory of this problem is very deep from theory of
matrices (or linear algebra). For the similarity of this problem we do some simplifications.

A and B will be matrices with the same size and square shape.
A / B is the first possible operation. This is normal slash. We called this division from

B the right side.
A \ B is the second possible operation. This is back-slash. We called this division from

A the left side.

Example

A = [4, 2, 2; 2, 0, 1; 7, 2, 1];
B = [3, 2, 4; 1, 2, 4; 2, 0, 1];

A / B
ans =

3.5000 -2.5000 -2.0000
0.0000 -0.0000 1.0000
6.0000 -5.0000 -3.0000

A \ B
ans =

0 0 0.2000
0.5000 -1.0000 -2.0000
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1.0000 2.0000 3.6000

B / A
ans =

2.0000 1.0000 -1.0000
2.4000 0.6000 -1.4000
-0.0000 1.0000 0.0000

B \ A
ans =

1.0000 1.0000 0.5000
-9.5000 -0.5000 0.2500
5.0000 0.0000 0.0000

A / B = A * inv (B) – in mathematical expression it is A · B−1. Both cases are
roughly the same, except it is computed in a different way.

A \ B = inv (A) * B – in mathematical expression it is A−1 · B. Both cases are
roughly the same, except it is computed in a different way.

Notice

The slash and back slash are defined on the real number too. Please try similar operation
2 / 3 and compare with 2 \ 3 ! Answer is similar too, 2 \ 3 = 3 / 2 !

Inversion function inv is not defined on the each matrix. Very simply is possible say,
that this is division 1/matrix, but this non mathematical axiom!

Special case is the division one matrix by oneself
A / A = A * inv (A) = 1
A \ A = inv (A) * A = 1
A / A = A \ A
Symbol for this identity matrix may be vary - most often thick one 1.

Example

A = [4, 2, 2; 2, 0, 1; 7, 2, 1]

A / A
ans =

1.0000 0 0
0.0000 1.0000 0.0000

0 0 1.0000

A * inv(A)
ans =

1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000

In this condition is this division equivalent operation. All previous operation respect
linear algebra laws. But for praxis is necessary to test it.

Division ./ and .\

Array right division A ./ B and array left division A .\ B is the matrix with elements
A(m,n) / B(m,n) or A(m,n) \ B(m,n). A and B must have the same size. Array right
division A ./ B is the same as array left division B .\ A.
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A = [4, 2, 2; 2, 0, 1; 7, 2, 1];
B = [3, 2, 4; 1, 2, 4; 2, 0, 1];

A ./ B
ans =

1.3333 1.0000 0.5000
2.0000 0 0.2500
3.5000 Inf 1.0000

A .\ B
ans =

0.7500 1.0000 2.0000
0.5000 Inf 4.0000
0.2857 0 1.0000

B ./ A
ans =

0.7500 1.0000 2.0000
0.5000 Inf 4.0000
0.2857 0 1.0000

B .\ A
ans =

1.3333 1.0000 0.5000
2.0000 0 0.2500
3.5000 Inf 1.0000

Notice

A ./ B = B .\ A
B ./ A = A .\ B

This is similar to the division of any number by another number, for example:

3./6 6./3
ans = ans =

0.5000 2

6.\3 3.\6
ans = ans =

0.5000 2

Addition +

+ is addition or unary plus. A + B adds A and B. A and B must have the same size, unless
one is a scalar. A scalar can be added to a matrix of any size.

A + B = B + A, i.e. addition is commutative. This expression shows fully equivalent
function. It is valid only for the same size of matrices.

Example

x = +5
x =

5

A = [4, 2, 2; 2, 0, 1; 7, 2, 1];
B = [3, 2, 4; 1, 2, 4; 2, 0, 1];
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C = A + B
C =

7 4 6
3 2 5
9 2 2

H = B + A
H =

7 4 6
3 2 5
9 2 2

A + x
ans =

9 7 7
7 5 6
12 7 6

Subtraction −

- is subtraction or unary minus. A - B subtracts B from A. A and B must have the same
size, unless one is a scalar. A scalar can be subtracted from a matrix of any size.

A - B 6= B - A
A - B = -B + A

Example

A = [4, 2, 2; 2, 0, 1; 7, 2, 1];
B = [3, 2, 4; 1, 2, 4; 2, 0, 1];

A - B
ans =

1 0 -2
1 -2 -3
5 2 0

B - A
ans =

-1 0 2
-1 2 3
-5 -2 0

-B + A
ans =

1 0 -2
1 -2 -3
5 2 0

y = -3
y =

-3

A - y
ans =

7 5 5
5 3 4
10 5 4
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The matrix C formed by adding the matrices A and B, see previous example: Addition
+

C-B
ans =

4 2 2
2 0 1
7 2 1 % Compare with matrix A!

Adding A to B and then subtracting B from the result C recovers A.

Powering ∧

^ is matrix power. A^p is A to the power p, if p is a scalar.
A^2 = A * A (result in this case is equal to classical matrix operation - multiplication

*)
A.^2 = A .* A (result in this case is power of each element of matrix A)

Example

A = [4, 2, 2; 2, 0, 1; 7, 2, 1];

A^3
ans =

244 92 92
107 40 41
307 112 111

A * A * A
ans =

244 92 92
107 40 41
307 112 111

A.^3
ans =

64 8 8
8 0 1

343 8 1

A .* A .* A
ans =

64 8 8
8 0 1

343 8 1

Transpose ’

’ is matrix transpose. A’ is the linear algebraic transpose of A. For complex matrices, this
is the complex conjugate transpose.

Example

A = [4, 2, 2; 2, 0, 1; 7, 2, 1]
A =

4 2 2
2 0 1
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7 2 1
A’
ans =

4 2 7
2 0 2
2 1 1

K=[1+i, 2-i; 1-i, 5-2i]
K =

1.0000 + 1.0000i 2.0000 - 1.0000i
1.0000 - 1.0000i 5.0000 - 2.0000i

K’
ans =

1.0000 - 1.0000i 1.0000 + 1.0000i
2.0000 + 1.0000i 5.0000 + 2.0000i

Transpose .’

.’ is array transpose. A.’ is the array transpose of A. For complex matrices, this does not
involve conjugation.

Example

A = [4, 2, 2; 2, 0, 1; 7, 2, 1]
A =

4 2 2
2 0 1
7 2 1

A.’
ans =

4 2 7
2 0 2
2 1 1 % Compare with the result of A’!

K=[1+i, 2-i; 1-i, 5-2i]
K =

1.0000 + 1.0000i 2.0000 - 1.0000i
1.0000 - 1.0000i 5.0000 - 2.0000i

K.’
ans =

1.0000 + 1.0000i 1.0000 - 1.0000i
2.0000 - 1.0000i 5.0000 - 2.0000i % Compare with the result of K’!

Notice

The list of all basic operations with matrices is possible obtain after typing help ops.

2.5 Vector operations and tools

Vectors are matrices with one row or one column. The same rules apply for vectors and for
matrices.
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Example

We have linear row vectors a and b:

a = [1, 2, 3];
b = [4, 5, 6];

a.’
ans =

1
2
3

b.’
ans =

4
5
6

What will obtain like result of operation a * b? The right answer in this case is error,
Fig. 2.5!

Figure 2.5: Differences between vector and array multiplication

If we use these structures in the dot operation a .* b, we obtain the right result,
Fig. 2.5.

ans =
4 10 18

Example

Some operations that can be performed with vectors a and b:
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b .* a
ans =

4 10 18

a * b.’
ans =

32

b.’ * a
ans =

4 8 12
5 10 15
6 12 18

a.’ * b
ans =

4 5 6
8 10 12
12 15 18

b * a.’
ans =

32

a + b
ans =

5 7 9

format rat % approximation by ratio of integers

a ./ b
ans =

1/4 2/5 1/2

a .\ b
ans =

4 5/2 2

The same problem appears in the case of multiplying two columns vectors. Non dot
operation on these types of vectors is not defined. Dot operation gives us result. Dot
multiplying is multiplying elements on elements. Each element multiplies with the same
one on the same position in the second structure.

Example

The column vectors are transposed vectors a and b from the previous example:

a.’ .* b.’
ans =

4
10
18

b.’ .* a.’
ans =

4
10
18
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2.6 Comparison MATLAB functions with alternative products

e - Euler’s number
Euler’s number is not defined in MATLAB. exp(x) is the exponential of the elements of

x, i.e. ex .

Example

exp(1)
ans =

2.7183

exp([1,2,5,10])
ans =
2.7183 7.3891 1.4841e+002 2.2026e+004

Euler’s number is defined in Octave as predefined constant e.

2.7 Example from Electrical Engineering

2.7.1 The serial connection of resistors

a) Solve the equivalent resistance of series connected resistors R1 = 1 Ω and R2 = 3.2 Ω,
Fig. 2.6.

Figure 2.6: The serial connection of resistors R1 a R2

Solution

R1 = 1;
R2 = 3.2;
result = R1 + R2

Resistors values can be specified as a vector:

R = [1,3.2];
result = R(1)+R(2)

where R(1) and R(2) is elements of the vector R,
or using built-in function sum

R = [1,3.2];
result = sum(R)

where sum(R) is the sum of the elements of the vector R.
MATLAB always answers in these examples

result = 4.2000

b) Solve the equivalent resistance of series connected resistors R1 = 1 Ω, R2 = 2 Ω,
R3 = 3 Ω, R4 = 4 Ω, and R5 = 5 Ω, Fig. 2.7.

Solution
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Figure 2.7: The serial connection of several resistors

R = [1, 2, 3, 4, 5];
result = sum(R)

MATLAB answers

result = 15

2.7.2 The parallel connection of resistors

a) Solve the equivalent resistance of parallel connected resistors R1 = 1 Ω and R2 = 3.2 Ω,
Fig. 2.8.

Figure 2.8: The parallel connection of resistors R1 a R2

Solution

R1 = 1;
R2 = 3.2;
result = (1/R1 + 1/R2)^(-1)

Resistors values can be specified as a vector (the same as in the previous example):

R = [1,3.2];
result = (1/R(1) + 1/R(2)).^(-1)

or it can be

result = sum(1./R).^(-1)

MATLAB always answers in this example

result = 0.7619

b) Solve the equivalent resistance of parallel connected resistors R1 = 1 Ω, R2 = 2 Ω,
R3 = 3 Ω, R4 = 4 Ω, and R5 = 5 Ω, Fig. 2.9 (n= 5).

Figure 2.9: The parallel connection of several resistors
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This is useful for several resistors connected in parallel, R is a vector of values of resis-
tances.

Solution

R = [1, 2, 3, 4, 5];
result = sum(1./R).^(-1)

MATLAB answers

result = 0.4380

2.7.3 The series-parallel connection of resistors

Solve the equivalent resistance of series-parallel connected resistors R1 = 1 Ω, R2 = 3.2 Ω,
R3 = 4 Ω, Fig. 2.10

Figure 2.10: The series-parallel connection of resistors

Solution

R = [1, 3.2, 4];
result = (1/(R(1)+R(2)) + 1/R(3))^(-1);

Parentheses are used for enclosing of indexes of vector elements and for precedence in
mathematical expressions.

MATLAB answers

result = 2.0488

2.7.4 Ohm’s law

Find the current flowing through resistor R1 = 6 Ω using Ohm’s law. The resistor R1 is
connected to the source U0 = 20 V, Fig. 2.11

Ohm’s law states that the current through a conductor between two points is directly
proportional to the potential difference across the two points.

Figure 2.11: The simple circuit

Solution

U=20;
R1=6;
I=U/R1;
fprintf(’The current through R1 is %3.2f Amperes.\n’,I)

46



2.8. TEST OF MATRIX ORIENTED COMMANDS

MATLAB answers

The current through R1 is 3.33 Amperes.

2.8 Test of matrix oriented commands

1. How is possible obtain the size of allocation variable?

2. How is possible set up the out visual format for engineering style?

3. What is variable with name ans?

4. How are two main function of colon in MATLAB?

5. How are two main function of semicolon in MATLAB?

6. How are two main function of comma in MATLAB?

7. How is the main difference between matrix and array?

8. How is the command for calculation the size of matrix?

9. What to do command diag?

10. How is the difference between the parentheses and brackets?

11. How is the command for summation of column elements?

12. What is identity matrix?

13. What to do command inv?
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3
Matrix operations in the technical praxis

3.1 Solving the system of linear equations

Application of matrix in the real engineering is vary. One of the widest ranges using linear
system is in analysis electrical circuit namely in the application of Kirchhoff’s laws.

One way to solve the system of linear equations Ax = b is with x = inv(A)*b, where
matrix A is matrix of system coefficient and b is column vector of right side of system. A
better way, from both an execution time and numerical accuracy standpoint, is to use the
matrix division operator x = A\b. This produces the solution using Gaussian elimination,
without forming the inverse.

Example

We have this system of linear equations:

3x + 4y + 2z = 10

2x − 2y − 4z = 2

10x − 8y + 2z = 8

Solution
We must reduce this real system of linear equations on two-matrix structure.

Main matrix A and the right side values into vector b

A=[3, 4, 2; 2, -2, -4; 10, -8, 2]
b=[10; 2; 8]

And the own solving is very simple: A−1 · b. When you write this in MATLAB, it is:

x = inv(A) * b

It is very good to allocate to some variable name, for example x.
From definition of linear algebra is the same expression like in case

x = A \ b

We obtain the same results in both cases.

x =
1.8261
1.2319
-0.2029
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Attention

Using A\b instead of inv(A)*b for the system of 500 equations is two to three times as
fast.

3.2 Advanced algebraic commands

• Determinant
Last of the important matrix function named determinant. Mathematical expression
of determinant is not so simple. The determinant of a matrix is a number, which can
tell us something about the properties of the matrix.

In MATLAB this function represent command det. It is scalar value.

We obtain the determinant of matrix A using det(A).

• Rank of matrix

The rank function provides an estimate of the number of linearly independent rows
or columns of a full matrix.

• Condition number with respect to inversion
The condition number of a matrix measures the sensitivity of the solution of a system
of linear equations to errors in the data. It gives an indication of the accuracy of the
results from matrix inversion and the linear equation solution. Values of cond(A)
near 1 indicate a well-conditioned matrix.

• Matrix reciprocal condition number estimate

c = rcond(A) returns an estimate for the reciprocal of the condition of A in 1-norm
using the LAPACK condition estimator. If A is well conditioned, rcond(A) is near
1.0. If A is badly conditioned, rcond(A) is near 0.0. Compared to cond, rcond is a
more efficient, but less reliable, method of estimating the condition of a matrix.

Example

Solve the system of linear algebraic equations:

3x1 + 4x2 = 11

2x1 − 5x2 = −8

Solution

A = [3, 4; 2, -5];
b = [11; -8]
x = A \ b

MATLAB answers

x =
1.0000
2.0000

det([3,4;2,-5])
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ans = -23
The determinant of matrix A is -23. −23 6= 0, it is OK.

rank([3,4;2,-5])

ans = 2
This number represents 2 linearly independent rows of matrix A

rank([3,4,11;2,-5,-8])

ans = 2
This number represents 2 linearly independent rows of complete linear system with right
sides of the equations.
Rank of matrix [3,4;2,-5] is the same as rank of matrix [3,4,11;2,-5,-8], this is OK.

cond([3,4;2,-5])

ans = 1.7888
This means well-conditioned matrix.

rcond([3,4;2,-5])

ans = 0.36508
0.36508 6= 0, i.e. well-conditioned matrix.

If the matrix of coefficients of the system is regular, then the system has just one
solution.

Example

Solve the system of linear algebraic equations

x1 + x2 = 11

2x1 + 2x2 = −8

Solution

x = [1,1;2,2] \ [11;-8];

det([1,1;2,2])

ans = 0
The determinant of matrix A is 0. Pay attention to the solution of the system of equations.

cond([1,1;2,2])

ans = 3.8442e+16
This number is almost infinite, which means badly conditioned matrix.

rcond([1,1;2,2])

ans = 0
The value of zero means badly conditioned matrix.

rank([1,1;2,2])
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ans = 1
This number represents only 1 linearly independent row of matrix.

rank([1,1,11;2,2,-8])

ans = 2
This number represents 2 linearly independent rows of complete linear system with right
sides of the equations.
1 6= 2, i.e. the rank of matrix [1,1;2,2] isn’t the same as rank of matrix [1,1,11;2,2,-8],
this is badly.

If the matrix of coefficients of the system is singular and the vector of right sides is such
that the equations are linearly independent, then the system has no solution.

Example

Solve the system of linear algebraic equations:

x1 + x2 = 10

2x1 + 2x2 = 20

Solution

x = [1,1;2,2] \ [10;20];

rank([1,1;2,2])

ans = 1
This number represents only 1 linearly independent row of matrix.

rank([1,1,10;2,2,20])

ans = 1
This number represents 1 linearly independent row of complete linear system with right
sides of the equations.
1 = 1, i.e. rank of matrix [1,1;2,2] is the same as rank of matrix [1,1,10;2,2,20],
this is OK, but rank of matrix is 1 and we have 2 equations.

If the matrix of coefficients of the system is singular and the vector of right sides is such
that the equations are linearly dependent, then the system has infinitely many solutions.

3.3 Example from Electrical Engineering

3.3.1 The DC circuit - application of Kirchhoff’s laws

For the circuit shown in Fig. 3.1, find the current.
Given the following values:

R1 = 3 Ω, R2 = 2 Ω, R3 = 3 Ω,R4 = 6 Ω, R5 = 5 Ω, R6 = 6 Ω, R7 = 5 Ω, U01 = 48 V,
U02 = 43.2 V.

Kirchhoff’s current law (Kirchhoff’s first law): The principle of conservation of electric
charge implies that: At any node (junction) in an electrical circuit, the sum of currents
flowing into that node is equal to the sum of currents flowing out of that node, or: The
algebraic sum of currents in a network of conductors meeting at a point is zero.
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Figure 3.1: The DC circuit

Kirchhoff’s voltage law (Kirchhoff’s second law): The principle of conservation of en-
ergy implies that: The directed sum of the electrical potential differences (voltage) around
any closed network is zero, or: More simply, the sum of the emfs in any closed loop is equiv-
alent to the sum of the potential drops in that loop, or: The algebraic sum of the products
of the resistances of the conductors and the currents in them in a closed loop is equal to
the total electromotive force available in that loop.

Kirchhoff’s laws for this circuit:
Kirchhoff’s current law:

node A: I1 − I2 − I5 = 0 ,
node C: I3 − I4 + I5 = 0 .

Kirchhoff’s voltage law:
loop s1: R2 I2 + R3 I3 − R5 I5 − R6 I5 − R7 I5 = 0 ,
loop s2: −R1 I1 − R2 I2 + U01 = 0 ,
loop s3: −R3 I3 − R4 I4 + U02 = 0 .

Modifying of equations:
1 · I1 − 1 · I2 + 0 · I3 + 0 · I4 − 1 · I5 = 0
0 · I1 + 0 · I2 + 1 · I3 − 1 · I4 + 1 · I5 = 0
0 · I1 + R2 I2 + R3 I3 − 0 · I4 + (−R5 − R6 − R7)I5 = 0
−R1 I1 − R2 I2 + 0 · I3 + 0 · I4 + 0 · I5 = −U01
0 · I1 + 0 · I2 − R3 I3 − R4 I4 + 0 · I5 = −U02

Using matrix:

Solution

R1 = 3; R2 = 2; R3 = 3; R4 = 6; R5 = 5; R6 = 6; R7 = 5;
U01 = 48; U02 = 43.2;
A = [ 1, -1, 0, 0, -1;...

0, 0, 1, -1, 1;...
0, R2, R3, 0, -R5-R6-R7;...

-R1, -R2, 0, 0, 0;...
0, 0, -R3, -R4, 0];

b = [0; 0; 0; -U01; -U02];
currents = A \ b

The results obtained from MATLAB are
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currents =
10.3000
8.5500
3.6333
5.3833
1.7500

det(A)
ans = 864

The determinant 864 6= 0, this is OK.

rank(A)
ans = 5

rank([A,b])
ans = 5

Rank of matrix A is the same as rank of matrix [A,b] with right sides of the equations, this
is OK.

cond(A)
ans = 12.106

⇒ well-conditioned matrix

rcond(A)
ans = 0.052288

0.052288 6= 0⇒ well-conditioned matrix

If the matrix of coefficients of the system A is regular, then the system has just one so-
lution.

These currents are the solution of systems of linear algebraic equations:

I1 = 10.3000 A

I2 = 8.5500 A

I3 = 3.6333 A

I4 = 5.3833 A

I5 = 1.7500 A

3.3.2 The DC circuit 2 - application of Kirchhoff’s laws

For the circuit shown in Fig. 3.2, find the current.
Given the following values:

R1 = 15.3 Ω, R2 = 9.9 Ω, R3 = 16.5 Ω,R4 = 2.6 Ω, R5 = 7.5 Ω, R6 = 12.1 Ω,
R7 = 1.5 Ω, R8 = 9 Ω, R9 = 11.6 Ω, R10 = 9.2 Ω, R11 = 14.8 Ω, R12 = 12.1 Ω,
U0 = 50 V.

Kirchhoff’s laws for this circuit:
Kirchhoff’s current law:

node A: I1 − I2 − I3 = 0 ,
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Figure 3.2: The DC circuit

node B: I3 + I4 + I8 = 0 ,
node D: −I1 + I5 − I6 = 0 ,
node E: I6 − I7 − I8 = 0 .

Kirchhoff’s voltage law:
loop s1: R1 I1 + R2 I1 + R3 I2 + R67 I5 + R8 I5 = 0 ,
loop s2: −R3 I2 + R4 I3 − R5 I4 + U0 = 0 ,
loop s3: −R9 I6 − R10 I6 − R11 I7 − R8 I5 − R67 I5 = 0 ,
loop s4: R5 I4 − R12 I8 + R11 I7 − U0 = 0 ,
where R67 =

1
1

R6
+ 1

R7

= R6R7
R6+R7

.

Solution

U0=50;
R1=15.3;R2=9.9;R3=16.5;R4=2.6;R5=7.5;R6=12.1;R7=1.5;R8=9.0;R9=11.6;
R10=9.2;R11=14.8;R12=12.1;
R67=(1/R6+1/R7)^(-1);
A=[1,-1,-1,0,0,0,0,0;...
0,0,1,1,0,0,0,1;...
-1,0,0,0,1,-1,0,0;...
0,0,0,0,0,1,-1,-1;...
(R1+R2),R3,0,0,(R67+R8),0,0,0;...
0,-R3,R4,-R5,0,0,0,0;...
0,0,0,0,-(R67+R8),-(R9+R10),-R11,0;...
0,0,0,R5,0,0,R11,-R12];
b=[0;0;0;0;0;-U0;0;U0];
currents = A \ b

The results obtained from MATLAB are

currents =
-0.55439
1.34666
-1.90105
3.04498
-0.79823
-0.24384
0.90008
-1.14392
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det(A)
ans = 1.2494e+006

The determinant 1.2494e+ 006 6= 0, this is OK.

cond(A)
ans = 35.7236

⇒ well-conditioned matrix

rcond(A)
ans = 0.0159

0.0159 6= 0⇒ well-conditioned matrix

rank(A)
ans = 8

rank([A,b])
ans = 8

Rank of matrix A is the same as rank of matrix [A,b] with right sides of the equations, this
is OK.

If the matrix of coefficients of the system A is regular, then the system has just one so-
lution.

These currents are the solution of systems of linear algebraic equations:

I1 = −0.55439 A

I2 = 1.34666 A

I3 = −1.90105 A

I4 = 3.04498 A

I5 = −0.79823 A

I6 = −0.24384 A

I7 = 0.90008 A

I8 = −1.14392 A

Many examples of electrical practice is in [3].

3.4 Test of matrix operations in the technical praxis

1. Solve this system of linear equations:

7x1 + 12x2 + 3x3 = 15

6x1 + 5x2 − 4x3 = −9

3x1 + 9x2 − 8x3 = 4
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2. Solve this system of linear equations:

7x1 + x3 = 5

9x1 − 2x2 = −4

6x1 + 3x2 − 9x3 = −7

3. Find the current for the circuit shown in Fig. 3.3 with the voltage source U0 = 60 V
and the values of these resistors: R1 = 20 Ω, R2 = 8 Ω, R3 = 11 Ω,R4 = 17 Ω,
R5 = 21 Ω, R6 = 12 Ω, R7 = 18 Ω, R8 = 19 Ω, R9 = 11 Ω, R10 = 12 Ω,
R11 = 14 Ω, R12 = 12 Ω.

Figure 3.3: The DC circuit
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4
Complex numbers and complex matrices

4.1 Introduction to complex mathematics in MATLAB

The complex number is given

c = -6 + 8i;

The command real(c) returns the real part of c.
The command imag(c) returns the imaginary of c.
The command abs(c) returns the complex modulus (magnitude) of c.
(real(c).^2+imag(c).^2).^(1/2) is the complex modulus (magnitude) of c, too.
The command angle(c) returns the phase angles, in radians, of c.

Attention

Using commands atan and atan2
The command atan(imag(c)./real(c)) is inverse tangent, returns result in radians
only in the first and fourth quadrant, from −π

2 to π
2 . The results in the second and third

quadrant are badly!
The command atan2(imag(c),real(c)) is the four quadrant arctangent from −π to π
and results are OK.
Compare with results of the command angle(c).

Example

c = -6 + 8i;

real(c)
ans =

-6

imag(c)
ans =

8

abs(c)
ans =

10

(real(c).^2+imag(c).^2).^(1/2)
ans =

10
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angle(c)
ans =

2.2143

atan(imag(c)./real(c))
ans =

-0.9273 % attention - bad result, the result have to be in second quadrant!

atan2(imag(c),real(c)) % the result is OK. Compare with result of the command angle(c).
ans =

2.2143

4.2 Usage of complex matrices

When you solve problems from range electrical engineering, you may meet the complex
number like elements of matrix.

A = [1+i, 2-i; 1-i, 5-2i];

For complex matrices holds the same mathematical operations like for their normal
version. Only some special kind is dot operation with apostrophe.

If we use for complex matrix apostrophe without point, obtain other matrix like in case
using the dot symbol. Compare COMPLEX ’ and COMPLEX .’.

Example

A.’
ans =

1.0000 + 1.0000i 1.0000 - 1.0000i
2.0000 - 1.0000i 5.0000 - 2.0000i

A’
ans =

1.0000 - 1.0000i 1.0000 + 1.0000i
2.0000 + 1.0000i 5.0000 + 2.0000i

Try to explore difference on your own examples!

Function for complex numbers processing

The command real(K) returns the real part of elements of matrix K

K=[1+i,-5+6i;-3-4i,2-7i];
real(K)

ans =
1 -5
-3 2

The command imag(K) returns the imaginary part of elements of matrix K.

imag(K)

ans =
1 6
-4 -7
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abs(K) is the complex modulus (magnitude) of the elements of K,
abs(K) is the same as (real(K).^2+imag(K).^2).^(1/2).

abs(K)

ans =
1.4142 7.8102
5.0000 7.2801

The command angle(K) returns the phase angles, in radians, of a matrix with complex
elements.

angle(K)

ans =
0.7854 2.2655
-2.2143 -1.2925

The command angle(K)*180/pi is conversion of phase angles from radians to de-
grees.

angle(K)*180/pi

ans =
45.0000 129.8056

-126.8699 -74.0546

The command conj(K) returns the complex conjugate of K, i.e. real(K) - i*imag(K)
conj(K)

ans =
1.0000 - 1.0000i -5.0000 - 6.0000i
-3.0000 + 4.0000i 2.0000 + 7.0000i

4.3 Example from Electrical Engineering

4.3.1 The AC circuit - application of Kirchhoff’s laws

For the circuit shown in Fig. 4.1, find the currents.
This example discusses sinusoidal steady state. The circuit is analyzed by converting

into the frequency domain and by using the Kirchhoff’s laws. We use complex numbers to
calculate the result.

u0(t) = Umsin(ωt +ϕ) corresponds to U0 = Umejϕ

Given the following values:
R1 = 40 Ω, R2 = 30Ω, R3 = 10Ω, L = 0.1mH, C = 5µF, u0(t) = 10sin(ωt + 30◦)V,
ω= 2π f , f = 50Hz
u0(t) = 10sin(ωt + 30◦)V corresponds to U0 = 10ej30◦ V

Kirchhoff’s laws for this circuit:
Kirchhoff’s current law:

node A: I1 − I2 − I3 = 0
Kirchhoff’s voltage law:

loop s1: R1 I1 + R2 I2 + jωLI2 + R3 I1 − U0 = 0
loop s2: −R2 I2 − jωLI2 − j 1

ωC I3 = 0
Solution
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Figure 4.1: The AC circuit

R1=40;
R2=30;
R3=10;
L=0.1e-3; % conversion from miliHenry to Henry
C=200e-6; % conversion from microFarad to Farad
f = 50;
w = 2*pi*f;
Uo=10*exp(j*30*pi/180); % conversion from degrees to radians
A=[ 1, -1, -1;...
(R1+R3),(R2+j*w*L),0; ...
0,-R2-j*w*L,(1./(j*w*C))];
b=[0;Uo;0];
x=A\b; % calculation
Im=abs(x); % magnitudes of the currents
Irms=abs(x)/sqrt(2); % rms value of the currents
fi=angle(x)*180/pi; % phase constants (conversion to degrees)

for n=1:length(x)
fprintf(’\n i%d = %5.2f sin(wt + (%6.2f)) A\n’,n,Im(n),fi(n));

end

The result (waveforms of currents) obtained from MATLAB is

i1 = 0.17 sin(wt + ( 42.38)) A
i2 = 0.08 sin(wt + (-19.72)) A
i3 = 0.15 sin(wt + ( 70.34)) A

where character w corresponds to the angular frequency ω. For more information about
command fprintf, see the section 9.1.

4.3.2 Graphical representation of the results - phasor diagram of currents

Draw the phasor diagram of currents from the circuit in Fig. 4.1.
Solution using previous results

compass(x)

The plotting command compass(x) draws a graph that displays the vectors with com-
ponents (real(x), imag(x)) as arrows emanating from the origin (Fig. 4.2). For more
information about command compass, see the section 5.2.
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Figure 4.2: The phasor diagram of currents

4.4 Test of basic commands for complex mathematics

1. How do you get the real and imaginary part numbers of the matrix C,
where C = [6+7i, -5+3i; 9-5i, -4-7i]?

2. Create a transposed matrix to the matrix C from the previous question.

3. The complex number is given: c = 3+4i. We use the command abs(c). What
answers MATLAB?

4. The complex number is given: c = 2+2i. We use the command angle(c). What
answers MATLAB?
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5
Graphs and graphical commands

5.1 Basic graphical commands and libraries

Graphical commands and application classify on the basic and advanced scale of instruc-
tions. For usual mathematical expression of usual calculations and equations be enough for
the basic scale one. This group of instruction included for example commands like figure,
plot, plot3, axis, grid, colors and many more. The advanced group included more
sophisticated commands like interp1, interp2, alpha, shading, colormap and many
more. Using of some instruction on the specific application will be shown next.

The next example is necessary write due the M-file editor. In the Command window it
is possible too, but this is not very comfortable and in this case of modification, this way is
bad.

Example

We use basic graphical command plot.
In the M-file editor we entered next text.

%Program for testing basic graphical commands
%--------------------------------------------
%Graph of sinus function
%--------------------------------------------
%Definition of range X axis (or time basis)
t=-pi:pi/100:pi;
%--------------------------------------------
y=sin(t);
%graphical instruction
plot(t,y);
grid

And what this script does? It is very simple example of the definition of the X axe in
the range from −π number to π number with the step π/100. This is very smooth step for
graphic expression. In the next part it is calculation of y like sinus of t (like time step).
And the end of this script is dedicated graphic output of final graph of whole function -
plot(t, y), where y is defined as sin(t), Fig. 5.1.

Command grid of is used only for background gridlines in Figure window.

Notice

This is only notice from basic, the percentage symbol % is used for commentary in program
without effect for compiling.
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Figure 5.1: Graphical output from MATLAB

2 2.5 3 3.5 4
4

4.5

5

5.5

6

2 2.5 3 3.5 4
4

4.5

5

5.5

6

Figure 5.2: The point with coordinates x = 3, y = 5 (left figure)
and the complex number 3+ 5i (right figure)

Example

Plotting of point with coordinates x = 3, y = 5.

plot(3,5,’ro’)
grid

where plot(x,y,LineSpec) plots point defined by the x, y, LineSpec triplets, where
LineSpec specifies the marker symbol and color. For example: ’ro’ plots the red circle.
The string LineSpec is not mandatory.

Graphical output from MATLAB is depicted in left part of Fig 5.2.

Example

Plotting of complex number 3+ 5i.

plot(3+5i,’go’)
grid

The right part of Fig 5.2 shows graphical output from MATLAB. For complex c, plot(c)
is equivalent to plot(real(c),imag(c)). The string ’go’ provides view of complex
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number as the green circle. For detailed information about the complex numbers, see the
section 4.1.

More graphs in one Figure window

In this case, we can use the command plot again. The command plot(x1,y1,x2,y2,...,xn,yn)
plots each vector y versus vector x on the same axes.

plot(x1,y1,LineSpec,x2,y2,LineSpec...,xn,yn,LineSpec) plots lines defined by the
xn,yn,LineSpec triplets, where LineSpec specifies the line type, marker symbol, and color
using character string made from one element, for example: ’c+:’ plots a cyan dotted line
with a plus at each data point. Details can be obtained using help plot.

Example

Graph of functions: y1 = −sin2(x) and y2 = cos(x2 − 5), where x is from −2π to 2π.
Solution

x = [-2*pi:0.05:2*pi];
y1 = -sin(x).^2;
y2 = cos(x.^2 - 5);
plot(x,y1,’k’,x,y2,’r’)
xlabel(’x’)
ylabel(’y’)
legend(’y_1 = -sin^2(x)’,’y_2 = cos(x^2 - 5)’)

The graphical output from MATLAB is depicted in Fig. 5.3. The first line is black (using
string ’k’ that is included in the command plot), the second line is red (string ’r’).

The commands xlabel(’...’) and ylabel(’...’) add description beside the x-
axis and y-axis on the current axes.

The command legend(string 1,string 2, ..., string n) puts a legend on
the current plot using the specified strings as labels.
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Figure 5.3: Two lines in one Figure window
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Another possibility of more graphs in one Figure window is to use the command hold.
The command hold on keeps the existing graph and adds the next one to it. The command
hold off undoes the effect of hold on.

The same result as in the previous example can be obtained as follows:

x = [-2*pi:0.05:2*pi];
y1 = -sin(x).^2;
y2 = cos(x.^2 - 5);
plot(x,y1,’k’)
hold on
plot(x,y2,’r’)
hold off
xlabel(’x’)
ylabel(’y’)
legend(’y_1 = -sin^2(x)’,’y_2 = cos(x^2 - 5)’)

The displaying of each function y1 = −sin2(x) and y2 = cos(x2 − 5) independently in
a separate part of the Figure window will now be shown.

The command subplot(m,n,p) breaks the Figure window into an m-by-n matrix of
small subwindows and selects the p-th subwindow for the current plot.

Example

x = [-2*pi:0.05:2*pi];
y1 = -sin(x).^2;

subplot(1,2,1)
plot(x,y1,’k’)
xlabel(’x’)
ylabel(’y’)
title(’y_1 = -sin^2(x)’)

y2 = cos(x.^2 - 5);

subplot(1,2,2)
plot(x,y2,’r’)
xlabel(’x’)
ylabel(’y’)
title(’y_2 = cos(x^2 - 5)’)

The command title(’text’) adds text at the top of the current axis as graph title.
MATLAB answers with the opening of the Figure window, Fig. 5.4.
Other examples are presented in the following sections of this chapter.

If it is necessary to have two lines with different scales on the y-axis, we can use the
command plotyy, which plots graph with y tick labels on both left and right side.

plotyy(x1,y1,x2,y2) plots y1 versus x with y-axis labelling on the left and y2 versus
x with y-axis labelling on the right.

Example

Graph of functions: y1 = sin(x) and y2 = 100cos(x), where x is from 0 to 4π.

x=[0:0.01:4*pi];
y1=sin(x);
y2=100*cos(x);
plotyy(x,y1,x,y2)
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Figure 5.4: Two sub-windows in one Figure window

The graphical output from MATLAB is depicted in Fig. 5.5.
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Figure 5.5: Two lines in one Figure window with y-axes on both left and right side

5.2 Further types of graphs

Semilogarithmic scale plots, log scale plot

semilogx and semilogy plot data as logarithmic scales for the x- and y-axis, respectively.
loglog is log-log scale plot.
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Example

Let’s write commands to view graph of the function

y = 200e
2x

x+2 + sin(x)

where x is from 0 to 100.
Solution
We use first linearly equally spaced points between 0 and 100 (linspace), and loga-

rithmically equally spaced points between 1 and 100 (logspace) for x .

x=linspace(0,100,650);
y=200.*(exp(2.*x./(x+2))+sin(x));

subplot(5,1,1)
plot(x,y,’.’)

subplot(5,1,2)
semilogx(x,y,’.’)

subplot(5,1,3)
semilogy(x,y,’.’)

x=logspace(0,2,650);
y=200.*(exp(2.*x./(x+2))+sin(x));

subplot(5,1,4)
semilogx(x,y,’.’)

subplot(5,1,5)
loglog(x,y,’.’)

The graphical output from MATLAB is depicted in Fig. 5.6. The linearly spaced elements
of x is preferable when using graphical commands plot and semilogy, which have linear
scales for the x-axis. The logarithmically spaced elements of x is preferable when using
graphical commands emilogx and loglog, which have logarithmic scales for the x-axis.

Polar coordinates graph

polar accepts polar coordinates. polar(ϑ, r) makes a plot using polar coordinates of the
angle ϑ, in radians, versus the radius r.

Example

Graph of functions: r = sin(4ϕ)cos(4ϕ), where ϕ is from 0 to 2π.

fi = 0:0.01:2*pi;
polar(fi,sin(4*fi).*cos(4*fi),’r’)

Answer of MATLAB is shown in Fig. 5.7
pol2cart performs transform Polar to Cartesian coordinates. [X,Y] = pol2cart(fi,r)

transforms corresponding elements of data stored in polar coordinates (angle ϕ, radius r)
to Cartesian coordinates x , y .
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Figure 5.6: Using plot, semilogx, semilogy and loglog
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Figure 5.7: Polar coordinate plot

Example

Vectors fi and r are known from the previous example.

[x,y]=pol2cart(fi,r);
plot(x,y)

The result is depicted in Fig. 5.8

3-D graphs

3-D line plot

The plot3 function displays a three-dimensional plot of a set of data points.
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Figure 5.8: Cartesian coordinate plot (the same as in Fig. 5.7)

plot3(x1,y1,z1,x2,y2,z2,...,xn,yn,zn), where xn,yn,zn are vectors, plots one or more
lines (according to n) in three-dimensional space through the points whose coordinates are
the elements of xn,yn,zn.

Example

Graph the curve described by the parametric equations: x = t, y = tsin(t), z = tcos(t),
where t is from 0 to 20π.

t=[0:0.1:20*pi]
plot3(t,t.*sin(t),t.*cos(t),’g’)
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)

The graphical output from MATLAB is depicted in Fig. 5.9. The curve has a green color,
which is caused by string ’g’ in the command plot3.

0
20

40
60

80

−100
−50

0
50

100
−100

−50

0

50

100

xy

z

Figure 5.9: The three-dimensional plot x = t, y = tsin(t), z = tcos(t)
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Surfaces

The command mesh displays 3-D mesh surface. mesh(X,Y,Z) plots the colored parametric
mesh defined by three matrix arguments.

The command meshz displays 3-D mesh surface as mesh, but with curtain.

Example

View 3-D mesh surface of the function of two variables: z = sin(x2 + y2), where x is from
-1 to 1, y is from -1.3 to 1.3.

Solution
We need matrix arguments, so we use the command meshgrid. The command [X,Y] = meshgrid(x,y)
transforms the domain specified by vectors x and y into arrays X and Y that can be used for
the evaluation of functions of two variables and 3-D surface plots. The rows of the output
array X are copies of the vector x and the columns of the output array Y are copies of the
vector y.

Matrices X and Y are used for the calculation of matrix Z.

x = linspace(-1,1,20);
y = linspace(-1.3,1.3,20);
[X,Y] = meshgrid(x,y);
Z = sin(X.^2+Y.^2);

subplot(1,2,1);
mesh(X,Y,Z)
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)

subplot(1,2,2);
meshz(X,Y,Z)
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)

The graphical output of MATLAB is shown in Fig. 5.10.

The command surf displays 3-D colored surface. surf(X,Y,Z) plots the colored para-
metric surface defined by three matrix arguments.

The command surfl is the same as surf except that it draws the surface with high-
lights from a light source.

Example

This example is a continuation of the previous example. View 3-D colored surface the
function of two variables z = sin(x2 + y2).

Solution
Two a nested loops are used instead of the command meshgrid, which would also be
suitable.

x = linspace(-1,1,20);
y = linspace(-1.3,1.3,20);
for m = 1:length(x)

for n = 1:length(y)
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Figure 5.10: The three-dimensional mesh surface of the function of two variables:
z = sin(x2 + y2)

Z(m,n) = sin(x(m)^2 + y(n)^2);
end

end
subplot(1,2,1);
surf(X,Y,Z)
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)

subplot(1,2,2);
surfl(X,Y,Z)
xlabel(’x’)
ylabel(’y’)
zlabel(’z’)

The result is depicted in Fig. 5.11.

Contour Plots

Contour plot of matrix can be displayed using the command contour.
The command contourf is the same as contour except that the areas between con-

tours are filled with colors according to the Z-value for each level.
The command contour3 displays 3-D contour plot.
colorbar appends a color bar (color scale) to the current axes of surface graphs and

contour plots.
There are combination mesh/contour plot and surf/contour plot. The combination

mesh/contour plot is meshc, which is the same as mesh except that a contour plot is drawn
beneath the mesh. Similarly, surfc is the same as surf except that a contour plot is drawn
beneath the surf.
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Figure 5.11: The three-dimensional colored surface of the function of two variables:
z = sin(x2 + y2)

Example

This example is a continuation of the previous example. View various contour plots the
function of two variables z = sin(x2 + y2).

Solution
Again, we obtain matrix arguments X and Y using the command meshgrid.

x = linspace(-1,1,20);
y = linspace(-1.3,1.3,20);
[X,Y] = meshgrid(x,y);
Z = sin(X.^2+Y.^2);

subplot(3,2,1);
contour(X,Y,Z)
colorbar

subplot(3,2,2);
contourf(X,Y,Z)
colorbar

subplot(3,2,3);
contour3(X,Y,Z)

subplot(3,2,4);
contour3(X,Y,Z,’k’) % contours are black
hold on
mesh(X,Y,Z) % addition the mesh surface to the contour plot
hold off

subplot(3,2,5);
meshc(X,Y,Z)

subplot(3,2,6);
surfc(X,Y,Z)
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The graphical output from MATLAB is depicted in Fig. 5.12.
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Figure 5.12: The contour plots of the function of two variables:
z = sin(x2 + y2)

Direction plots

The command quiver(X,Y,F,G) plots vectors as arrows with components (f,g) at the
points (x,y). The matrices X,Y,F,G must all be the same size and contain corresponding
position and velocity components.

Example

View the gradient field of the function of two variables z = cos(x2+ y2), where x , y is from
-1 to 1.

Solution
We obtain matrix arguments X and Y using the command meshgrid and we calculate ma-
trix Z.

We have to calculate gradient field of the function z = cos(x2 + y2). The command
[FX,FY] = gradient(F), where F is a matrix, returns the and components of the two-
dimensional numerical gradient. The output of gradient(F) is two matrices FX,FY.

x = [-1:0.2:1];
y = x;
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[X,Y] = meshgrid(x,y);
Z=cos(X.^2+Y.^2);

subplot(1,2,1);
contour(X,Y,Z)

[FX,FY]=gradient(Z);

hold on
quiver(X,Y,FX,FY)
hold off

The gradient field as arrows using quiever is shown in left part of Fig. 5.13.
The command quiver3(X,Y,Z,F,G,H) plots vectors as arrows with components (f,g,h)

at the points (x,y,z). The matrices X,Y,Z,F,G,H must all be the same size and contain the
corresponding position and velocity components.

Example

This example is a continuation of the previous example. Compute and display 3-D surface
normals of the function of two variables z = cos(x2 + y2).

Solution
We assume that the matrices are X, Y and Z are known, see previous example. We have to
compute 3-D surface normals of the function z = cos(x2 + y2). The surfnorm function
computes surface normals for the surface defined by X, Y, and Z.

[Nx,Ny,Nz] = surfnorm(X,Y,Z) returns the components of the three-dimensional
surface normals for the surface.

subplot(1,2,2)
mesh(X,Y,Z)

[NX,NY,NZ]=surfnorm(X,Y,Z);
hold on
quiver3(X,Y,Z,NX,NY,NZ)
hold off
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Figure 5.13: The gradient field and surface normals of the function of two variables:
z = cos(x2 + y2)
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Right part of Fig. 5.13 depicts surface normals of the function of two variables z =
cos(x2 + y2).

The compass(x,y) graph displays the vectors with components (x,y) as arrows ema-
nating from the origin. x,y are in Cartesian coordinates and plotted on a circular grid.

If c is a complex number, the command compass(c) displays c as well as compass(real(c), imag(c)).

Example

x = round(randn(1,8).*5)
y = round(randn(1,8).*5)

subplot(1,2,1)
compass(x,y)

C = [3+4i, -2+6i, -5-1i, 3-2i]
subplot(1,2,2)
compass(C, ’r’)

MATLAB answers

x =
5 6 -4 0 -6 -6 0 8

y =
-4 2 -1 6 -5 0 3 6

C =
3.0000 + 4.0000i -2.0000 + 6.0000i -5.0000 - 1.0000i 3.0000 - 2.0000i

Fig. 5.14 shows the graphical output from MATLAB.
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Figure 5.14: The compass graph as arrows emanating from the origin

A feather plot displays vectors emanating from equally spaced points along a horizon-
tal axis. We express the vector components relative to the origin of the respective vector.

Example

Create a feather plot.

subplot(2,1,1)
x = [0:5,4:-1:0]
y = [-5:5]
feather(x,y)
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subplot(2,1,2)
x = linspace(-2*pi,2*pi,40);
feather(x,sin(x))
grid

MATLAB answers

x =
0 1 2 3 4 5 4 3 2 1 0

y =
-5 -4 -3 -2 -1 0 1 2 3 4 5

The graphical output is shown in Fig. 5.15.
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Figure 5.15: The Feather plot

Proportional representation of values expressing chart

bar, barh draws bar graph (vertical and horizontal)
bar3, bar3h plots 3-D bar chart (vertical and horizontal)
pie draws a pie chart
pie3 draws a 3-D pie chart

Example

CEZ Group’s electricity production in 2007 - 2011 is presented in Table:
year 2007 2008 2009 2010 2011

electricity [GWh] 73 793 67 595 65 344 68 433 69 209
Graphically display statistics on electricity production.

Solution

p = [73793, 67595, 65344, 68433, 69209];
subplot(4,2,1)
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bar(p)
subplot(4,2,2)
barh(p,’r’)
subplot(4,2,3)
pie(p)
subplot(4,2,4)
pie(p,{’2007’,’2008’,’2009’,’2010’,’2011’})
subplot(4,2,3)
pie(p,[0,0,0,0,1])
subplot(4,2,4)
pie(p,[1,1,1,1,1],{’2007’,’2008’,’2009’,’2010’,’2011’})
subplot(4,2,5)
bar3(p,’y’)
subplot(4,2,6)
bar3h(p,’g’)
subplot(4,2,7)
pie3(p)
subplot(4,2,8)
pie3(p,{’2007’,’2008’,’2009’,’2010’,’2011’})

Statistics on electricity production are depicted in Fig. 5.16.

5.3 Settings the graph properties

The command axis determines axis scaling and appearance.
axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis of the current

axes of 2-D plots.
axis([xmin xmax ymin ymax zmin zmax]) sets the x-, y-, and z-axis limits of the

current axes of 3-D plots.
v = axis returns a row vector containing scaling factors for the x-, y-, and z-axis. v

has four or six components depending on whether the current axes is 2-D or 3-D, respec-
tively.

axis equal sets the aspect ratio so that the data units are the same in every direction.
The aspect ratio of the x-, y-, and z-axis is adjusted automatically according to the range
of data units in the x , y , and z directions.

axis image is the same as axis equal except that the plot box fits tightly around the
data.

axis squaremakes the current axes region square (or cubed when three-dimensional).
This option adjusts the x-axis, y-axis, and z-axis so that they have equal lengths and adjusts
the increments between data units accordingly.

axis normal automatically adjusts the aspect ratio of the axes and the relative scaling
of the data units so that the plot fits the figure’s shape as well as possible.

axis off turns off all axis lines, tick marks, and labels.
axis on turns on all axis lines, tick marks, and labels.

Example

x = [-pi/2 : 0.1 : pi/2];
plot(x, sin(x))
axis
ans =

-2 2 -1 1
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Figure 5.16: Examples of bar and pie charts

This means that range of x-axis in the plot is from -2 to 2 and range of y-axis in the plot is
from -1 to 1.

The command grid displays grid lines for 2-D and 3-D plots.
grid on adds major grid lines to the current axes.
grid off removes major and minor grid lines from the current axes.
grid toggles the major grid visibility state.
grid minor toggles the minor grid lines of the current axes.

Example

x = [-2*pi : 0.1 : 2*pi];
subplot(2,1,1)
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plot(x, sin(x))
grid
subplot(2,1,2)
plot(x, sin(x))
grid minor

The result is depicted in Fig. 5.17.
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Figure 5.17: The plot of function sin(x) with grid and grid minor

5.4 Using graphical output in electrical engineering examples

5.4.1 Volt-ampere characteristic of linear resistor

Draw a Volt-ampere characteristic of linear resistor. Assume that values of current I and
voltage U on a linear resistor were measured (see table):

U [V] 0 1 2 3

I [mA] 0 10 20 30

Solution

U=[0:3];
I=[0:10:30];
plot(U,I,’o-r’)
title(’Volt-ampere characteristic’)
xlabel(’I[mA]’)
ylabel(’U[V]’)

The command plot(U,I) plots vector I versus vector U. Various line types, plot symbols
and colors may be obtained with a character string, for example: ’o-r’ plots a red solid
line with a circle at each data point. The command title(’text’) adds text at the top of
the graph. The commands xlabel(’...’) and ylabel(’...’) add description beside
the X -axis and Y -axis on the current axes.

The result obtained from MATLAB is graphical output, Fig. 5.18.
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Figure 5.18: Volt-ampere resistor characteristic

5.4.2 Transfer function of electronic filter

Passive implementations of linear filters are based on combinations of resistors (R), induc-
tors (L) and capacitors (C). These types are collectively known as passive filters, because
they do not depend upon an external power supply and/or they do not contain active com-
ponents such as transistors. A filter in which a capacitor provides a path to ground, presents
less attenuation to low-frequency signals than high-frequency signals and is therefore a low-
pass filter. Resistors on their own have no frequency-selective properties, but are added to
inductors and capacitors to determine the time-constants of the circuit, and therefore the
frequencies to which it responds.

For the circuit shown in Fig. 5.19 find the transfer function in the range from 1 rad/s to
105 rad/s and draw transfer function (dependence of magnitude and phase angle of trans-
fer function on the angular frequency ω) into the two sub-windows in semi-logarithmic
coordinates with the axis with logarithmic division. Given R= 10 Ω, C = 1 mF.

Figure 5.19: The filter

Transfer function:

KU =
U2

U1
=
−j · 1

ωC

R− j 1
ωC

=
1

jωC

R+ 1
jωC

Solution
For characteristics of filter, we use the command logspace (logarithmically spaced

vector) for creating w. During calculation, it is necessary to apply the operation "./" and
".*", because w is the vector. The command abs(Ku) calculates the complex modulus
(magnitude) of the elements of Ku. The command angle(Ku) returns the phase angles,
in radians.
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The command subplot(2,1,p) breaks the Figure window into an 2-by-1 matrix of
small subwindows and selects the p-th subwindow for the current plot.

The command semilogx(...) is the same as the command plot(...), except a
logarithmic (base 10) scale is used for the x-axis. The command grid adds major grid
lines to the current axes.

w = logspace(0, 5, 100);
R = 10;
C = 1e-3;
Ku = 1./(j.*w.*C)./(R+1./(j.*w.*C)); % operation ./ is required
Ku_abs = abs(Ku);
Ku_angle = angle(Ku)/pi*180; % conversion to degrees

subplot(2,1,1);
semilogx(w, Ku_abs);
grid
xlabel(’\omega (rad/s)’);
ylabel(’|K_u|’);

subplot(2,1,2);
semilogx(w, Ku_angle);
grid
xlabel(’\omega (rad/s)’);
ylabel(’angle K_u’);

The result obtained from MATLAB is in Fig. 5.20.
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Figure 5.20: Characteristics of the filter

5.4.3 The balanced tree-phase AC voltage source

Draw a plot of balanced 3-phase system.
For a balanced 3-phase system, voltages have the same magnitude and they are out of

phase by 120◦.
uU = Umsin(ωt)
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uV = Umsin(ωt − 120◦)

uW = Umsin(ωt − 240◦)

where Um is magnitude and ω= 2π f is angular frequency.
Solution
We use command plot. The command hold on keeps the existing graph and adds the

next one to it. The command hold off undoes the effect of hold on.

t=[0:1e-4:5e-2];
uU=10.*sin(2.*pi.*50.*t);
uV=10.*sin(2.*pi.*50.*t-2*pi/3);
uW=10.*sin(2.*pi.*50.*t-4*pi/3);
plot(t,uU,’r’)
hold on % this command keeps the existing graph and adds the next one to it.
plot(t,uV,’b’)
plot(t,uW,’g’)
hold off % this command undoes the effect of "hold on"
xlabel(’t[s]’)
ylabel(’u_U[V], u_V[V], u_W[V]’)
title(’The balanced tree-phase system’,’FontSize’,18)

The result obtained from MATLAB is depicted in Fig 5.21

Figure 5.21: The balanced tree-phase system

5.4.4 The plotting of gradient

Given two functions z1 = x2 + 0.5y2 and z2 = −x2 − 0.5y2. Draw 3-D mesh surface and
contour plot with gradient fields of these functions for x , y from -10 to 10.

Solution
The command [X,Y] = meshgrid(x,y) transforms the domain specified by vectors

x and y into arrays X and Y that can be used for 3-D surface plots. The rows of the output
array X are copies of the vector x and the columns of the output array Y are copies of the
vector y. This is followed by calculation of Z using matrices X and Y. The matrix Z has the
same dimensions as the arrays X and Y.
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The command subplot(2,2,p) breaks the Figure window into an 2-by-2 matrix of
small subwindows and selects the p-th subwindow for the current graph and the command
mesh(X,Y,Z) plots the colored parametric mesh defined by three matrix arguments. The
command contour is contour plot of matrix Z treating the values in Z as heights above
a plane. The command hold on keeps the existing graph of contour and adds the next
graph of gradient to it. The command [GX,GY] = gradient(Z) returns the numerical
gradient of the matrix Z. The command quiver(X,Y,GX,GY) plots vectors as arrows with
components (GX,GY) at the points (X,Y). The command hold off undoes the effect of
hold on.

x=-10:2:10;
y=x;
[X,Y]=meshgrid(x,y);
Z1=X.^2+0.5.*Y.^2;
Z2=-X.^2-0.5.*Y.^2;
subplot(2,2,1)
mesh(X,Y,Z1)
xlabel(’x’)
ylabel(’y’)
zlabel(’z_1’)

subplot(2,2,2)
mesh(X,Y,Z2)
xlabel(’x’)
ylabel(’y’)
zlabel(’z_2’)

subplot(2,2,3)
contour(X,Y,Z1)
hold on
[GX,GY]=gradient(Z1);
quiver(X,Y,GX,GY)
hold off

subplot(2,2,4)
contour(X,Y,Z2)
hold on
[GX,GY]=gradient(Z2);
quiver(X,Y,GX,GY)
hold off

The result obtained from MATLAB is depicted in Fig 5.22.

5.5 Test of graphical commands, settings and using graphs

1. Write commands to view graph of a function y1 = sin3(x) and y2 = sin(x3).

2. What is the difference between commands plot3 and mesh?

3. Draw a curve by parametric equations x = sin(t), y = t, z = cos(t), where t is from
0 to 20π.

4. Draw graph of function z = e−x2−y2
, where x , y are from -3 to 3.

5. View contour plot and gradient field of function z = e−x2−y2
, where x , y are from -3

to 3.
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Figure 5.22: Contours and gradient of functions z1 = x2 + 0.5y2 and z2 = −x2 − 0.5y2
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6
Polynomial regressions and interpolations

6.1 Basic commands for solving polynomials

Polynomial functions are the basic function in many scientific subjects. Very useful are for
example polynomial regression. In MATLAB is strictly defined the right rules for writing
polynomials. Each polynomial must be transpose into vector construct from its coefficient
including zero numbers.

The polynomial 1:
4x3 + 3x + 1

It can write:
4x3 + 0x2 + 3x1 + 1x0

The transcription into vector form is

V1 = [4, 0, 3, 1];
length(V1)
ans =

4

The elements of vector are coefficients of polynomial. The number of elements in the vector
is 4, i.e. one more than the degree of the polynomial (the polynomial degree is 3).

The polynomial 2:
8x7 − 3x3 + 12

It can write:
8x7 + 0x6 + 0x5 + 0x4 − 3x3 + 0x2 + 0x1 + 12x0

The transcriptions into vector forms is in this case:

V2 = [8,0,0,0,-3,0,0,12];
length(V2)
ans =

8

The elements of vector are coefficients of polynomial. The number of elements in the vector
is 8, i.e. one more than the degree of the polynomial (the polynomial degree is 7).

Zero coefficients are very important, their missing cause the bad result. It is very often
error from the apprentice students in MATLAB courses.
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Example

What polynomial represents the vector V3 = [8, -3, 12] ?
Solution

8x2 − 3x1 + 12x0, i.e. 8x2 − 3x + 12.
The number of elements in the vector is 3, the polynomial degree is 2. Compare with the
polynomial 2, which is represented by the vector V2.

6.2 Polynomial functions and libraries

Complete list of all polynomial functions obtains after typing help polyfun.
There are namely these five very important commands: roots, poly, polyval, conv,

deconv
The command roots - find polynomial roots. roots(V) computes the roots of the

polynomial whose coefficients are the elements of the vector V.
This function calculates the roots of polynomial. If we have the polynomial 2x2+3x−3

defined by its coefficients, we may construct vector from these coefficients

V = [2, 3, -3];
roots(V)
ans =

-2.1861
0.6861

roots(V) returns roots of equation 2x2 + 3x − 3 = 0. The solution of this equation is
x1 = −2.1861, x2 = 0.6861.

Example

The classic quadratic equation: 2x2 − 2x + 2= 0
Solution

Like the first step in solving this equation is construction of the vector of coefficients KV.
The vector KV is in this case KV = [2,-2,2].

In second step is using the function roots on the KV vector:

KV = [2,-2,2];
roots(KV)

And MATLAB writes on the command window results:

ans =

0.5000 + 0.8660i
0.5000 - 0.8660i

This means that the solving of quadratic equation 2x2 − 2x + 2= 0 is:
x1 = 0.5+ 0.8660i
x2 = 0.5− 0.8660i.
Roots are in the complex range.
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Example

Solve the equation: 3.1x3 + 4x5 = 7x2 − 11
Solution

Equation should be modified: 4x5 + 0x4 + 3.1x3 − 7x2 + 0x1 + 11= 0

p = [4, 0, 3.1, -7, 0, 11];
roots(p)
ans =

0.97274 + 0.57470i
0.97274 - 0.57470i
-0.51238 + 1.44129i
-0.51238 - 1.44129i
-0.92071 + 0.00000i

The solving of equation is: x1 = 0.97274+ 0.57470i, x2 = 0.97274− 0.57470i,
x3 = −0.51238+ 1.44129i, x4 = −0.51238− 1.44129i, and x5 = −0.92071.

The command poly convert roots to polynomial. This function is inversion to function
roots.

Example

Find a quadratic equation for the roots x1 = −2, x2 = −3.

x = [-2; -3];
poly(x)
ans =

1 5 6

The quadratic equation x2 + 5x + 6= 0 has the roots x1 = −2, x2 = −3.
The command polyval(V,X) returns the value of a polynomial V evaluated at X. V is

a vector of length n+1 whose elements are the coefficients of the polynomial in descending
powers: V(1) · X n + V(2) · X n−1 + ...+ V(n) · X + V(n+ 1)

Example

V = [2, 3, -3];
Y = polyval(V, 5)

Y =
62

This means that polyval(V, 5) returns the value of a polynomial 2x2+3x−3 evaluated
at 5, i.e. 2 · 52 + 3 · 5− 3= 62.

If X is a matrix or vector, the polynomial is evaluated at all elements in X.
Function polyval is the first function for solving the polynomial regression. This com-

mand is shortcut from polynomial values and the functionality is very similar.
We have vector defined by coefficients and we may calculate value for this polynomial

in all values in user specific range. And this is the first step in polynomial regression.
Y = polyval(V, X) where X = [0.1, 0.2, 0.3, 2, 3, 4] is vector of testing

number.
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Example

V = [2, 3, -3];
X = [0.1, 0.2, 0.3, 2, 3, 4];
Y = polyval (V , X)

Y =
-2.6800 -2.3200 -1.9200 11.0000 24.0000 41.0000

Testing interval is possible inputs in vector form X = [0: 0.1 :1].

V = [2, 3, -3];
X = 0: 0.1 :1;
Y = polyval (V , X)

Y =

Columns 1 through 7
-3.0000 -2.6800 -2.3200 -1.9200 -1.4800 -1.0000 -0.4800

Columns 8 through 11
0.0800 0.6800 1.3200 2.0000

This is very usable namely in case we have not the certain values.

Example

Solve the equation: 2x3 − 12x2 + 22x = 12
Solution:

Equation should be modified: 2x3 − 12x2 + 22x1 − 12= 0

t = [2, -12, 22, -12];
x = roots(t)
x =

3.0000
2.0000
1.0000

The solving the equation is x1 = 3, x2 = 2, x3 = 1.
The test solving:

polyval(t,x)
ans =
7.1054e-015
5.3291e-015

0

The solving the equation is OK.
Finding the equation coefficients for these roots:

r1 = poly(x)
r1 =

1.0000 -6.0000 11.0000 -6.0000

roots(r1)
ans =

3.0000
2.0000
1.0000
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The roots x1 = 3, x2 = 2, x3 = 1 are the solution to the equation x3 − 6x2 + 11x1 − 6= 0

r2 = poly(x).*2
r2 =

2.0000 -12.0000 22.0000 -12.0000

poly(x).*3
r3 =

3.0000 -18.0000 33.0000 -18.0000

roots(r3)
ans =

3.0000
2.0000
1.0000

All these equations:
x3 − 6x2 + 11x1 − 6= 0

2x3 − 12x2 + 22x1 − 12= 0

3x3 − 18x2 + 33x1 − 18= 0

and other equations with coefficients n·poly(x) have the same solution x1 = 3, x2 = 2,
and x3 = 1.

The command conv performs polynomial multiplication. If we have two polynomials
defined by theirs coefficients (vectors V and Q). This function calculates theirs multiplication
by using command conv(V,Q). V and Q are polynomials constructed from coefficients from
both origin polynomials. conv is shortcut for convolution.

Example

V = [2, 3, -3];
Q = [7, 6, 8, 9];
S = conv(V,Q)
S =

14 33 13 24 3 -27

This means:

(2x2 + 3x − 3) · (7x3 + 6x2 + 8x + 9) = 14x5 + 33x4 + 13x3 + 24x2 + 3x − 27

The command deconv performs polynomial division. It is the same function, but in-
verse - deconv(S,Q) will provide division of these two polynomials. deconv is shortcut
for deconvolution.

[P,R] = deconv(S,Q) deconvolves vector S out of vector Q. The result is returned
in vector P and the remainder in vector R such that S = conv(P,Q) + R.

Example

[P,R] = deconv(S,Q)
P =

2.0000 3.0000 -3.0000
R =
1.0e-014 *

0 0 0 -0.6217 -0.9326 -0.3109
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The vector R can be considered as zero, 10−14 is very small number.
This means:

14x5 + 33x4 + 13x3 + 24x2 + 3x − 27
7x3 + 6x2 + 8x + 9

= 2x2 + 3x − 3, remainder is 0

Example

A = [1, 2, 4, 3];
S = [14, 33, 13, 24, 3, -27];
[B,R] = deconv(S,A)
B =

14 5 -53
R =

0 0 0 68 200 132

This means:

14x5 + 33x4 + 13x3 + 24x2 + 3x − 27
x3 + 2x2 + 4x + 3

= 14x2 + 5x − 53, remainder is 68x2 + 200x − 132

Test of the correct solution:

conv(A,B)+R
ans =

14 33 13 24 3 -27

i.e. the vector S.

6.3 Graphical representation of polynomial expressions

We have two ways in presentation our data set and regression results. First of them is very
easy and using the MATLAB internal possibilities. It is enough to have only data set with
X and Y data groups and MATLAB calculated regression relations between theirs automat-
ically alone.

For example use the testing data sets X and Y from courses.
In the command window is necessary inputs data sets for X and Y in next form.

x=[0,1,2,3,4,5,6,7,8,9,10];
y=[0.1,1.2,2.2,4.4,4.2,5.1,6.1,7.5,8.2,9.1,9.0];

and use command for plotting

plot(x,y,’o’)

Advice

This commands and notice is very comfortable solve like M-file. Not only in the command
window, but open like the new M-file (File - New - M-file or File - New - Script according
to your version of MATLAB). The file must be saved in the current directory with the file
extension .m.

After running this script we obtain graphic window with our data. Axis and background
grids are in default style and in this time it is uninteresting. Elements are in the default
blue color and default circle shape with default range for X and Y axe.
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Figure 6.1: Open new M-file for the new program for regression polynomials

Figure 6.2: Example of the program for graphic output for regression

And in this moments is the rigt time for apply MATLAB default solving the polynomial
and spline technology from default MATLAB Libraries. And from the top of windows menu
choose the right path Tools - Basic Fitting and opens the next window with dialog parts.

In the first section named Plot fits we choose the right regression type and check the
right radio button. In our graph appear the new curve and in the second part of this window
appears the right shape of te equation and the right parameters like norm of residuals.

For example we choose the cubic interpolation and obtain the next graph.
The interpolation equations and coefficients are in the second small window.
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Figure 6.3: The graphic output window with new data sets

Figure 6.4: Basic fitting menu from default MATLAB libraries

6.4 Fitting functions and regression

6.4.1 Polynomial regression

The values in the vectors t a y will be interpolated with third polynomial degree.

%Polynomial functions
%Part of visualisation of input data
%-----------------------------------
t=[0,.3,.8,1.1,1.6,2.3]’;
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Figure 6.5: Data with the polynomials regression curve 3 degree

Figure 6.6: Filled basic fitting table for presented data regression

y=[0.5,0.82,1.14,1.25,1.35,1.40]’;
plot(t,y,’o’)
grid on
hold on
%Part computerisation of regression data
%---------------------------------------
X=[ones(size(t)),t,t.^2,t.^3]
a=X\y
%Polynomial regression
%---------------------------------------
T=(0:0.1:2.5)’;
Y=[ones(size(T)),T,T.^2,T.^3]*a;
plot(T,Y,’r-’)

The polynomial regression is shown in Fig. 6.7.
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Figure 6.7: Polynomial regression

6.4.2 Polynomial curve fitting

Using the other functions like polyfit and polyval shows this M-File with the complete
interpolated methodic.

Example

%M-File show polynomial determined of values x and y

x=[0,1,2,3,4,5,6,7,8,9,10];
y=[0.1,1.2,2.2,4.4,4.2,5.1,6.1,7.5,8.2,9.1,9.0];
plot(x,y,’bo’)
grid on

%like the polynomial degree set the 3, the same as in previous case.

a=polyfit(x,y,3);
disp(a)

%polyfit calculate coefficients of the new polynomials 3 degree

k=length(x);
xx=x(1):0.1:x(k);
yy=polyval(a,xx);

%calculate values of new polynomials

hold on
plot(xx,yy,’r-’)
hold off

MATLAB answers

-0.0020 -0.0017 1.1317 0.1420
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Figure 6.8: Polynomial regression

This means:
The points with coordinates x and y are interpolated with polynomial:

−0.002x3 − 0.0017x2 + 1.1317x + 0.1420

Fig. 6.8 depicts graphical output from MATALB.
We can calculate the y value for the point x = 2.5, which was not between the input

values.

polyval(a, 2.5)
ans =

2.9293

Notice

For fast easy analysis of high amount of data is useful special MATLAB feature named Basic
fitting. This function is useful when we have the file full of numeric data and we want
provide the basic statistical analytic on this data.

In this moment, when we have the basic graphical output only in the dot style, is nec-
essary choose from the menu item of this window - Tools - Basic Fitting and in the last part
choose the right style of numerical interpolation. Graph will be modified automatically.

6.4.3 Spline technology

yy = spline(x,y,xx) uses a cubic spline interpolation to find yy, the values of the
underlying function y at the values of the interpolant xx.

Example

Vectors x and y have the same values as the previous example:

x=[0,1,2,3,4,5,6,7,8,9,10];
y=[0.1,1.2,2.2,4.4,4.2,5.1,6.1,7.5,8.2,9.1,9.0];
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xx=x(1):0.1:x(end);

yy = spline(x,y,xx);

plot(x,y,’o’,xx, yy, ’g’)
xlabel(’x’)
ylabel(’y’)

Fig. 6.9 depicts cubic spline interpolation for points with with coordinates x and y .
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Figure 6.9: Cubic spline interpolation

We obtain the same result using function interp1. The function interp1 performs
one-dimensional interpolation. This function uses polynomial techniques, fitting the sup-
plied data with polynomial functions between data points and evaluating the appropriate
function at the desired interpolation points. The spline method is selected as the inter-
polation method:

yy = interp1(x,y,xx,’spline’);
plot(x,y,’o’,xx, yy , ’g’)

Its most general form of interp1 is yi = interp1(x,y,xi,method), where y is a
vector containing the values of a function, and x is a vector of the same length containing
the points for which the values in y are given. xi is a vector containing the points at
which to interpolate. method is an optional string specifying an interpolation method:
’nearest’, ’linear’, ’spline’ or ’cubic’.

Interpolation for two-dimensional data is also possible. The function interp2 performs
two-dimensional interpolation, an important operation for image processing and data vi-
sualization. Its most general form is ZI = interp2(X,Y,Z,XI,YI,method), where Z is
a rectangular array containing the values of a two-dimensional function, and X and Y are
arrays of the same size containing the points for which the values in Z are given. XI and YI
are matrices containing the points at which to interpolate the data. method is an optional
string specifying an interpolation method ’nearest’, ’linear’ or ’cubic’.
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ENGINEERING PROBLEMS

6.5 Examples of the polynomial regression applied on the elec-
trical engineering problems

6.5.1 Volt-ampere characteristic of non-linear component

Draw a Volt-ampere characteristic of non-linear component. Assume that values of current
and voltage on a linear component were measured (see table):

i[mA] 0 10 20 30 40 50 60 70 80

u[V] 0 1 3 6 9 12 14 15 15

Solution
p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits the
data, p(x(i)) to y(i), in a least squares sense. The result p is a row vector of length n+1
containing the polynomial coefficients in descending powers. In this example, x is vector
I and y is vector U.

The function polyval(p,xx) returns the value of a polynomial of degree n evaluated
at xx. The input argument p is a vector of length n+1 whose elements are the coefficients
in descending powers of the polynomial to be evaluated.

The command plot can plot more than one function simultaneously. In the plot com-
mand, one can specify the symbol as well as the color of the line, for example: ’o’ stands
for circle and ’b’ for blue, ’g’ for green, ’k’ for black; etc.

U=[0,1,3,6,9,12,14,15,15];
I=[0:10:80];
xx=[0:0.05:80];
y1=polyval(polyfit(I,U,1),xx);
y2=polyval(polyfit(I,U,2),xx);
y5=polyval(polyfit(I,U,5),xx);
plot(I,U,’ok’,xx,y1,’r’,xx,y2,’g’,xx,y5,’b’)
title(’Volt-ampere characteristic of non-linear component’, ’Fontsize’,18)
xlabel(’i[mA]’)
ylabel(’u[V]’)
legend(’data points’,’polynomial of first order’,’polynomial of second order’,’ polynomial of fifth order’,’Location’,’SouthEast’)

The result obtained from MATLAB is in Fig

6.5.2 Curve fitting in 3D

We have measured data of humidity in a room. Dimensions of the room and humidity
values are given in table. We want to create a 3D surface graph, but in some points in a
room are not measured. We need some interpolation in 3D.

Measured data:
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Figure 6.10: Nonlinear voltampere characteristic

6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5

/ 41.7 42.1 43.1 42.9 41.8 42.8 43.1 44.1 44.6 44.2 / 6

/ 42.2 43.9 / / / 42.9 42.9 42.6 43.1 43.1 43.1 5.5

/ 45.5 41.6 41.8 / / 43.2 43.6 44.3 44.3 44.3 45.2 5

43.3 43.1 / / / / 43.3 43.5 44 42.9 43.3 43.9 4.5

42.2 43.5 / / / / / / 44.2 43.8 43.6 42.9 4

41.4 / / / 41.4 / / / 43.5 42.9 43.1 43.2 3.5

42 41.6 42.3 42.2 42.8 43.1 44 43.6 43.8 42.8 43 42.6 3

41.8 41.9 41.9 42.5 42.2 43.3 43.1 43.6 43.7 43.9 43.1 42.5 2.5

41.8 42.5 41.9 43.2 42.6 43.5 43.2 44.5 43.9 43.7 43 42.5 2

41.9 42.8 42 42.6 44.2 43.4 43.3 43.4 43.7 42.3 43.9 42.5 1.5

41.9 43.9 43.6 41.6 / / 44.3 43.5 43.3 41.8 43 42.7 1

42.2 42.3 42.1 41.4 / / 44.6 43.6 42.8 42.4 43.3 43.2 0.5

Solution
Key functions:

interp2 - formula ZI = interp2(X,Y,Z,XI,YI) returns matrix ZI containing ele-
ments corresponding to the elements of XI and YI and determined by interpolation within
the two-dimensional function specified by matrices X, Y, and Z. X and Y must be monotonic,
and have the same format ("plaid") as if they were produced by meshgrid. Matrices X and
Y specify the points at which the data Z is given. Out of range values are returned as NaNs.

griddata - formula ZI = griddata(x,y,z,XI,YI) fits a surface of the form z =
f (x , y) to the data in the (usually) nonuniformly spaced vectors (x,y,z). griddata inter-
polates this surface at the points specified by (XI,YI) to produce ZI. The surface always
passes through the data points. XI and YI usually form a uniform grid (as produced by
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meshgrid).

humidity = [NaN 41.7 42.1 43.1 42.9 41.8 42.8 43.1 44.1 44.6 44.2 NaN
NaN 42.2 43.9 NaN NaN NaN 42.9 42.9 42.6 43.1 43.1 43.1
NaN 45.5 41.6 41.8 NaN NaN 43.2 43.6 44.3 44.3 44.3 45.2
43.3 43.1 NaN NaN NaN NaN 43.3 43.5 44 42.9 43.3 43.9
42.2 43.5 NaN NaN NaN NaN NaN NaN 44.2 43.8 43.6 42.9
41.4 NaN NaN NaN 41.4 NaN NaN NaN 43.5 42.9 43.1 43.2
42 41.6 42.3 42.2 42.8 43.1 44 43.6 43.8 42.8 43 42.6
41.8 41.9 41.9 42.5 42.2 43.3 43.1 43.6 43.7 43.9 43.1 42.5
41.8 42.5 41.9 43.2 42.6 43.5 43.2 44.5 43.9 43.7 43 42.5
41.9 42.8 42 42.6 44.2 43.4 43.3 43.4 43.7 42.3 43.9 42.5
41.9 43.9 43.6 41.6 NaN NaN 44.3 43.5 43.3 41.8 43 42.7
42.2 42.3 42.1 41.4 NaN NaN 44.6 43.6 42.8 42.4 43.3 43.2]

temp_x = [6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5]

temp_y = [6
5.5
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5]

% we prepare axes for 3D graph
[X,Y] = meshgrid(temp_x,temp_y);

% interpolation
% we select points without value NaN and their x and y coordinates into
% variables xr, yr, zr
how_many_values = 0;
for cycle_x=1:length(temp_x)

for cycle_y=1:length(temp_y)
if ~(isnan(humidity(cycle_y,cycle_x)))

how_many_values = how_many_values + 1;
xr(how_many_values) = temp_x(cycle_x);
yr(how_many_values) = temp_y(cycle_y);
zr(how_many_values) = humidity(cycle_y,cycle_x);

end;
end;

end;

xi = temp_x(1):-0.05:temp_x(end);
yi = temp_y(1):-0.05:temp_y(end);
[XI,YI] = meshgrid(xi,yi);
ZI = griddata(xr,yr,zr,XI,YI,’cubic’);
surf(XI,YI,ZI);

hold on % to hold previous graph

plot3(xr,yr,zr,’.r’);
hold off
shading interp % coloured interpolation
colorbar % colour scheme legend
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% graph including contours
figure
surfc(XI,YI,ZI);
shading interp % coloured interpolation
colorbar % colour scheme legend

% measured data graph
figure
surf(X,Y,humidity);
shading interp % coloured interpolation
colorbar % colour scheme legend

% three graphs in column (3x1 graph), we used the first one
subplot(3,1,1)
surf(XI,YI,ZI)
shading interp % coloured interpolation
colorbar % colour scheme legend

% three graphs in column (3x1 graph), we used the second one
subplot(3,1,2)
surf(XI,YI,ZI)
shading interp % coloured interpolation
colorbar % colour scheme legend

% three graphs in column (3x1 graph), we used the third one
subplot(3,1,3)
surf(XI,YI,ZI)
shading interp % coloured interpolation
colorbar % colour scheme legend

figure % new figure creating
surf(XI,YI,ZI)
shading interp % coloured interpolation
colorbar % colour scheme legend

% changing of colormap
% using colormapeditor - for exmple to setup threshold values
colormap(copper)

figure % new figure creating
pcolor(XI,YI,ZI)
shading interp % coloured interpolation
colorbar % colour scheme legend

figure % new figure creating
contour(XI,YI,ZI)

figure % new figure creating
mesh(XI,YI,ZI)
hold on
contour3(XI,YI,ZI,’k’) % 3D contours in black
hold off

Fig. 6.11 shows interpolation for the specified two-dimensional data in 3D.
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Figure 6.11: Interpolation for two-dimensional data in 3D
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6.6. TEST OF COMMANDS FOR SOLVING POLYNOMIALS AND POLYNOMIAL
REGRESSIONS

6.6 Test of commands for solving polynomials and polynomial
regressions

1. We have polynomial 5x3+7x2+4. How can you determine the value of 5·23+7·22+4
and the value of 5 · (−2)3 + 7 · (−2)2 + 4?

2. Solve the equation 4x2 + 6x + 3= 0.

3. Solve the equation 2x7 + 5x4 + 3x2 + x − 1= 0

4. During the measurement, these values have been found:
t[s] 1 2 3 4 5 6 7

i[A] 3 5 5 6 8 7 8

Determine the coefficients of the second degree polynomial and fit points using this
polynomial of second degree.
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7
Flow control statements

7.1 Flow Control Statements

The statements in m-files are generally executed from top to bottom, in the order that they
appear. Flow control statements are statements which execution results in a choice being
made as to which of two or more paths should be followed. These kind of commands break
up the flow of execution by employing decision making, looping, and branching, enabling
your program to conditionally execute particular blocks of code. This section describes the
decision-making statements (if–end, if–else–end, switch–case–end), the loop statements
(for–end, while–end) and auxiliary statements (break and continue).

Flow control statements in MATLAB has a syntax like in "standard" programming lan-
guages.

Loop for

Example

This example creates a vector size n.

x = [];
for k = 1:n
x=[x, k.^2];

end

Example

This example creates the same vector, but in reverse order (loop step is set to -1)

x = [];
for k = n:-1:1
x=[x, k.^2];

end

Example

This example creates a Hilbert’s matrix size a by b.

for k = 1:a
for m = 1:b
H(k, m) = 1/(k+m-1);

end
end
H
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Example

Let us matrix:

A = [1:5; 10:-2:2; 0:3:12]

A =
1 2 3 4 5
10 8 6 4 2
0 3 6 9 12

Find the square of the matrix elements and measure the time.
Solution

The commands tic, toc measures the time it takes the MATLAB software to execute the
one or more lines of MATLAB code. The tic command starts a stopwatch timer, MATLAB
executes the block of statements, toc stops the timer and displaying the elapsed time in
seconds.

tic
B = A.^2;
toc

MATLAB answers

Elapsed time is 0.003426 seconds.

For the other method of solution we need to know the matrix dimensions:

[rows,columns] = size(A);

tic
for m = 1:rows

for n = 1:columns
B(m,n) = A(m,n)^2;

end
end
toc

MATLAB answers

Elapsed time is 0.011099 seconds.

The example shows that the use of array operation is quicker than using for loops.
The resulting matrix B in both cases is as follows

B =
1 4 9 16 25

100 64 36 16 4
0 9 36 81 144

Advice

In short, replacing loops by array operations, everywhere, where it is possible, rapidly in-
crease execution speed of MATLAB program.
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7.1. FLOW CONTROL STATEMENTS

Loop while

Example

In this example for a given number computes and shows smallest non-negative number n,
where 2^n>= a.

n = 0;
while (2^n < a)
n = n + 1;
end
n

Loop’s Auxiliary Statements

Auxiliary statements Break and continue are used to extend ability to control functionality
of loop statements.

break breaks out of the smallest enclosing for or while loop,

continue continues with the next iteration of the loop, it passes control to the next iteration
of the for or while loop in which it appears, skipping any remaining statements in
the body of the loop.

Example

while condition
some_commands_1;
if(a < 5)
break;

if (b > 30)
continue;

some_commands_2;
end

Conditional statement if

Example

if n < 0
parity = 0;
elseif (rem(n,2) == 0)
parity = 2;

else
parity = 1;

end

Example

Is matrix A equal to matrix B ?

if A == B
command;

end

Is matrix A non-equal to matrix B ?
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7.1. FLOW CONTROL STATEMENTS

if any(any(A ~= B)) % because we must test
command;

end

or in a simple case

if A == B
;

else
command;

end

But the command

if A ~= B
command;

end

doesn’t work properly, because command; will be executed only in case of whole relation
matrix contains zeros.

Conditional statement switch

Unlike if–end and if–else–end statements, the switch statement can have a number of pos-
sible execution paths.

Example

The code converts the value x in cm to the unit defined in variable units, using the switch
statement.

x = 2.7;
units = ’m’
switch units % convert x to centimeters
case { ’inch’, ’in’ }
y = x * 2.54;

case { ’feet’, ’ft’ }
y = x * 2.54 * 12;

case { ’meter’, ’m’ }
y = x * 100;

case { ’millimeter’, ’mm’ }
y = x / 10;

case { ’centimeter’, ’cm’ }
y = x;

otherwise
disp([’Unknown Units: ’, units])
y = NaN;

end

Exception

The general form of exception command try–catch is

try
some_commands_1;

catch
some_commands_2;

end
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7.2. TEST OF FLOW CONTROL STATEMENTS

In this sequence, the statements between try and catch are executed. If an error occurs here,
execution of try block has been stopped. Program execution continues with statements
between catch and end. User can use lasterr variable to obtain the cause of the error.

7.2 Test of flow control statements

1. Create a function, which ask user for two numbers. Then your function prints, which
number is greater (first or second) and prints the value of the greater number.

2. Create a function, which plots a graph of the function sin(t) or cos(t) or sin2(t), on
given interval 〈−2π; 2π〉. Ask user, which function to plot.

3. Create a function, which returns matrix given by user. In your function ask user for
matrix sizes and then control, if the matrix sizes are greater then one. Then ask user,
to give elements values, element by element, in row direction.
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8
Integration

8.1 Numerical integration

Quadrature is a numerical method used to find the area under the graph of a function, that
is, to compute a definite integral.

The quad function evaluates integral numerically, using adaptive Simpson quadrature.
The quad function may be most efficient for low accuracies with nonsmooth integrands.

Let’s solve the integral

q =

b
∫

a

f (x)d x

q = quad(fun,a,b) tries to approximate the integral of function fun from a to b to
within an error of 1e-6 using recursive adaptive Simpson quadrature.

The quadl function evaluates integral numerically, using adaptive Lobatto quadrature.
The quadl function may be more efficient than quad at higher accuracies with smooth
integrands.

The quadgk function evaluates integral numerically, using adaptive Gauss-Kronrod
quadrature. The quadgk function may be most efficient for high accuracies and oscilla-
tory integrands. It supports infinite intervals and can handle moderate singularities at the
endpoints. It also supports contour integration along piecewise linear paths.

The quadv function evaluates integral numerically, using vectorized quadrature.

Notice

The quad2d function evaluates double integral numerically over planar region.
The dblquad function evaluates double integral numerically over a rectangle.
The triplequad function evaluates triple integral numerically over the three dimen-

sional rectangular region.

Example

For numeric evaluate integral MATLAB uses function quad, which used for calculation inte-
gration function from A to B recursive adaptive Simpson quadrature, as mentioned above.
Using this function isn’t so simple.

F = @(x) sin (x); % allocate the function of variable x
Q = quad (F, 0, pi) % and for this interval is result 2
Q =

2.0000
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8.1. NUMERICAL INTEGRATION

More details are in the contextual help after typing help quad

Example

q = quad(@sin, 0, 2*pi)
q =

0

q = quad(@cos, 0, pi/2)
q =

1.0000

This is simplest syntax for the integral calculation. It is useful only for the simplest mathe-
matical functions, for more difficult expression is not proper.

For case the complicated integration is better way to use Editor and make some function
and from the Command Windows only this function call.

Example

We have this formula to the integration

y =

2
∫

0

sin(x2) · cos2(x)d x

Compute this integral.
Solution

First step is preparing the new M-file with this function in the right shape. From the Menu
of MATLAB choose File - New - M-File or File - New - Function (according to your version
of MATLAB), Fig. 8.1 and write commands, Fig. 8.2.

function y = myfun(x)
y = sin(x.^2) .* cos(x).^2;

The file myfun.m must be saved in the current directory with file extension .m and the
last action is calling this function myfun from Command Window, Fig. 8.3.

integral = quad(@myfun, 0, 2)
integral =

0.2106

Example

Display course of the function cos(x) for x from 0 to 2π and course of the integral of this
function

y =

2π
∫

0

cos(x)d x

Compare course of this integral with function sin(x).
Solution
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8.1. NUMERICAL INTEGRATION

Figure 8.1: Creation the new M-file for integration function

Figure 8.2: Creation the new M-file for integration function

function integration_1
% integration of function cos(x) in range from 0 to 2*pi and course of
% functions cos, integral of cos and a course of sin (to match them up)

% integration of cos
y=quad(@cos,0,2*pi);
disp(’integration of function cos from 0 to 2pi’)
disp(y)

x=[0 : pi/50 : 2*pi]; % vector (i.e. x axis) in range of 0 to 2*pi, step pi/50
for n=1:length(x) % loop with fix number of iterations, loop will execute

% so many times how many elements vector x have
yi(n)=quad(@cos,0,x(n)); % calculation of integral cos in range

% from 0 to n-th element of x vector
% and assignment of result to yi vector

end; % end of for loop
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8.1. NUMERICAL INTEGRATION

Figure 8.3: The calling the function with function limits and result

subplot(2,1,1) % division of figure to 2 fields and selecting of field 1
plot(x,cos(x),’--r’,x,yi,’-k’) % graph plots, selection of colors and

% line types
% cos(x) course - red, dashed line

% integral course - black, solid line
legend(’Course of cos’,’Course of integral’) % legend
subplot(2,1,2) % division of figure to 2 fields and selecting of field 2
plot(x,sin(x)) % graph plots of sin function (to match it up)
legend(’Course of function sin’) % legend

Notice

The command disp(x) displays the variable x, without printing the variable name. For
detailed information, see the section 9.1.
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Figure 8.4: Course of the function cos(x), integral
2π
∫

0
cos(x)d x , and function sin(x)
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8.1. NUMERICAL INTEGRATION

Example

Display course of the function sin(x) for x from 0 to 2π and course of the integral of this
function

y =

2π
∫

0

sin(x)d x

Compare course of this integral with function −cos(x).
Solution

function integration_2
% integration of function sin(x) in range from 0 to 2*pi and course of
% functions sin(x), integral of sin(x) and a course of -cos(x) (to match them up)

% integration of sin
y=quad(@sin,0,2*pi);
disp(’integration of function sin from 0 to 2pi’)
disp(y)

x=[0 : pi/50 : 2*pi]; % vector (i.e. x axis) in range of 0 to 2*pi, step pi/50
for n=1:length(x) % loop with fix number of iterations, loop will execute

% so many times how many elements vector x have
yi(n)=quad(@sin,0,x(n)); % calculation of integral sin in range

% from 0 to n-th element of x vector
% and assignment of result to yi vector

end; % end of for loop
subplot(2,1,1) % division of figure to 2 fields and selecting of field 1
plot(x,sin(x),’:g’,x,yi,’-k’) % graph plots, selection of colors and

% line types
% sin(x) course - green, dotted line

% integral course - black, solid line
legend(’Course of sin’,’Course of integral’) % legend
subplot(2,1,2) % division of figure to 2 fields and selecting of field 2
plot(x,-cos(x)) % graph plots of -cos(x)(to match it up)
legend(’Course of function -cos’) % graph plots of -cos function (to match it up)
axis([0,7,-2,1]) % axis range redefinition

Example

Display course of the function sin(x2) · cos2(x) for x from 0 to 2 and course of the integral
of this function

y =

2
∫

0

sin(x2) · cos2(x)d x

Solution
To compute this integral, we must write the M-file function myfun that computes the inte-
grand sin(x2) · cos2(x).

function y = myfun(x)
y = sin(x.^2) .* cos(x).^2;

This M-file is the same as M-file myfun.m in third example of this section 8.1, which can
also be used if saved in the same folder as the following M-file integration_3.m.
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Figure 8.5: Course of the function sin(x), integral
2π
∫

0
sin(x)d x , and −cos(x)

function integration_3
% integration of sin(x.^2) .* cos(x).^2 in range from 0 to 2
y=quad(@myfun,0,2);
disp(y)

% course of integral sin(x.^2) .* cos(x).^2
x=[0 : 0.05 : 2]; % vector (i.e. x axis) in range of 0 to 2, step 0.05
for n=1:length(x) % loop with fix number of iterations, loop will execute

% so many times how many elements vector x have
yi(n)=quad(@myfun,0,x(n)); % calculation of integral sin in range

% from 0 to n-th element of x vector
% and assignment of result to yi vector

end; % end of for loop
plot(x,myfun(x),’:m’,x,yi,’-c’) % graph plots, selection of colors and

% line types
% sin(x) course - green, dotted line

% integral course - black, solid line
legend(’Course of sin(x^2)cos^2(x)’,’Course of integral’) % legend

8.2 Analytical integration using Symbolic Math Toolbox

Symbolic Math Toolbox software provides a complete set of tools for symbolic computing
that augments the numeric capabilities of MATLAB.

Before testing the next example, is necessary check your Matlab installation fro presence
of the Symbolic Math Toolbox. This checking is possible to do with commands ver.

Previous example with integration represented the numerical style of problem solving.
We must specify not only the main function but the low and high integration limits.

In special cases we need the analytical result of some problem. There is necessary like
the first step input the symbolic variable - for example x. Definition of the symbolic variables

x = sym (’x’) % definition of symbolic variables x
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Figure 8.6: Course of the function sin(x2) · cos2(x) and integral
2
∫

0
sin(x2) · cos2(x)d x

x =
x

int - analytical integration
Examples:

int(x)

ans =
x^2/2

int(cos(x))

ans =
sin(x)

int(-1/x^2)

ans =
1/x

Notice

diff - analytical derivation

Y = diff (1/x) % this is request for analytical solving this expression

MATLAB answers:

Y = -1/x^2
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9
Advanced instructions for text input and output

9.1 Formatted printing

Simple text output

disp(3*5)
15

variable = 5;
disp(variable)

5

text = ’Hello’;
disp(text)

Hello

disp(’text string’)
text string

disp([’text’, ’ ’, ’string’])
text string

- there is no way to format output
The text strings are enclosed by apostrophes (single quote marks).

Notice

num2str converts numbers to a string.

disp([’The number is ’, num2str(5), ’. The number increased by 1 is ’, num2str(5+1),’.’])
The number is 5. The number increased by 1 is 6.

Formatted text output

fprintf(format, arguments) formats data and displays the results on the screen.

Examples

- print values in form: 8 chars, add spaces on left handed side

fprintf(’%8d %8d\n’, a, b);
56 34

- print values in form: 8 chars, add zeros on left handed side at first time and add spaces
on left handed side at second time

115



9.1. FORMATTED PRINTING

fprintf(’%08d %8d\n’, a, b);
00000056 34

- typed value 8 means "at least 8 chars". It mustn’t crop the longer integer.
- in case of decimal numbers - we want at whole 15 chars including decimal point and

including 2 decimal places

fprintf(’%15.2f\n’, x);
123.35

- if we want to print a sign every time (+ and -):

fprintf(’%+d %+d\n’, a, b);
+56 -34

Important special characters:

\n - new line
\t - tabulator
\r - return to the same line beginning (it’s operating system depend)
\b - in some operating systems - beep (loudspeaker).
\\ - print char

%% - print char %

%d - print integer decimal number (sign)
%i - print integer decimal number (sign)
%o - print octal scale number
%u - print decimal (decadic) number (unsigned)
%x or %X - print hexadecimal number
%f - print decimal number - fixed decimal point
%e or %E - print decimal number - exponential form
%g or %G - like %f and %e or %E - exponential form is used, if it is needed (if the number is
to big). High order zeros are omitted.
%c - print character (stored in variable)
%s - print text string (stored in variable)

Examples

The answer of MATLAB is always right behind the command fprintf.

a = 234;

fprintf(’Decadic scale: %d\nOctal scale: %o\n’, a, a);
Decadic scale: 234
Octal scale: 352

fprintf(’Hexadecimal scale: %x\n’, a);
Hexadecimal scale: ea

fprintf(’Hexadecimal scale: %X\n’, a);
Hexadecimal scale: EA

x = 123.3456;
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fprintf(’Fixed decimal point: %f\n’, x);
Fixed decimal point: 123.345600

fprintf(’exponential: %e\n’, x);
exponential: 1.233456e+002

fprintf(’EXPONENTIAL: %E\n’, x);
EXPONENTIAL: 1.233456E+002

fprintf(’"Smart" style g: %g\n’, x);
"Smart" style g: 123.346

fprintf(’"Smart" style g: %g\n’, x * 100000000);
"Smart" style g: 1.23346e+010

fprintf(’"SMART" STYLE G: %G\n’, x);
"SMART" STYLE G: 123.346

x = 1.2344e+034;

fprintf(’"SMART" STYLE G: %G\n’, x * 100000000);
"SMART" STYLE G: 1.2344E+042

Error

error displays message and abort function.

Example

We write in M-file editor:

function errorTest(x, y, z)
if nargin ~= 3

error(’Wrong number of input arguments’)
end

We save M-file as errorTest.m to the current folder.
Call the function with an incorrect number of inputs. The call to nargin, the function

that checks the number of inputs, fails and the program calls error:

errorTest(1, 2)
??? Error using ==> errorTest at 3
Wrong number of input arguments

Call the function with an correct number of inputs.

errorTest(1, 2, 3)
Entered correctly
x = 1.00
y = 2.00
z = 3.00

9.2 Request for user input

Input

r = input(prompt) displays the prompt string on the screen, waits for input from the
keyboard, evaluates any expressions in the input, and returns the value in r.

s = input(prompt, ’s’) returns the entered text as a MATLAB string.
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9.2. REQUEST FOR USER INPUT

Example

input(’Enter a number: ’)

The user enters a number 3 from the keyboard and MATLAB answer:

ans =
3

Example

r = input(’Enter a number: ’);

The user enters a number 5 from the keyboard.

fprintf(’Entered: %f\n’, r);
Entered: 5.000000

Example

in_char = input(’Enter a character: ’, ’s’);

The user enters the character n from the keyboard.

fprintf(’Entered: %c\n’, in_char);
Entered: n

Example

in_text = input(’Your text: ’, ’s’)

The user enters the string How are you? from the keyboard.

fprintf(’Was entered: %s\n’, in_text);
Was entered: How are you?

Menu of choices for user input

The command ch = menu(’mtitle’,’opt1’,’opt2’,...,’optn’) allows the user
to choose from the menu, whose title is in the string variable ’mtitle’ and whose choices
are string variables ’opt1’, ’opt2’, and so on. The menu opens in a modal dialog box.
menu returns the number of the selected menu item, or 0 if the user clicks the close button
on the window.

Notice

The command menu can always be replaced by decision-making statements(switch,if)
and instructions for text input and output.
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9.3. FORMATTED OUTPUT INTO FILE WITH PARAMETERS

Example

Plotting of functions sin(x), cos(x) or tan(x) from −π/3 to π/3 by user choice.

ch = menu(’Choose a function’,’sin’,’cos’,’tan’);

x=[-pi/3 : 0.05 : pi/3];
switch(ch)

case 1
y = sin(x);

case 2
y = cos(x);

case 3
y = tan(x);

otherwise
fprintf(’This option is not possible\n’);

end
plot(x,y)

The generated menu of choices for user input is shown in Fig. 9.1. The user chooses
the function selected by clicking, then the graph is plotted. The menu function is one of
Predefined dialogue boxes (section 9.5).

Figure 9.1: The generated menu of choices for user input

9.3 Formatted output into file with parameters

fprintf(fileID, format, A) applies the format to all elements of array A and any
additional array arguments in column order, and writes the data to a text file.

fd = fopen(’C:\\file_path\\file.txt’, ’mode’);

where fd - variable, so-called file descriptor and mode should be:
’r’ - read
’w’ - write, overwrite (re-write), create new file (if it is possible)
’a’ - append at the end of the existing file
’r+’ - read and write
’w+’ - read and write, overwrite (re-write), create new file (if it is possible)
’a+’ - read and write, overwrite (re-write), create new file (if it is possible) and append at
the end of the existing file.
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9.4. FORMATTED OUTPUT INTO TEXT STRINGS

Writing to text file

my_file = fopen(’C:\\file_path\\file.txt’, ’w’);
fprintf(my_file, the same parameters as on screen, arguments)

At the end we must close our file:

fclose(my_file);

Example

a = 234;
my_file = fopen(’datei.txt’, ’w’);
fprintf(my_file,’Decadic scale: %d\n’, a);
fprintf(my_file,’Octal scale: %o\n’, a);
fprintf(my_file,’Hexadecimal scale: %X\n’, a);
fclose(my_file);

In the text file datei.txt in the current folder, there is a written:

Decadic scale: 234
Octal scale: 352
Hexadecimal scale: EA

9.4 Formatted output into text strings

sprintf formats data into string.
str = sprintf(format, A) applies the format to all elements of array A and any

additional array arguments in column order, and returns the results to string str.
Write to string variable:

res_string = sprintf(the same parameters as on screen, arguments);

Example

in_text = input(’Your text: ’, ’s’)

The user enters after being prompted Your text: the string How are you? from the
keyboard.

mess = sprintf(’You entered: %s\n’, in_text);
figure % empty figure
title(mess) % figure’s title

The title of empty graph in Figure window is depicted in Fig. 9.2

9.5 Predefined Dialog Boxes

Predefined dialog boxes are dialog boxes for error, user input, waiting, etc.
dialog creates and displays dialog box
errordlg creates and displays error dialog box
helpdlg creates and displays help dialog box
inputdlg creates and displays input dialog box
listdlg creates and displays list selection dialog box
msgbox creates and displays message dialog box
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9.5. PREDEFINED DIALOG BOXES
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Figure 9.2: Title of empty graph

pagesetupdlg displays page setup dialog box
printdlg displays print dialog box
questdlgdisplays question dialog box
uigetdir displays standard dialog box for retrieving a directory
uigetfile displays standard dialog box for retrieving files
uiputfile displays standard dialog box for saving files
uisave displays standard dialog box for saving workspace variables
uisetcolor displays standard dialog box for setting an object’s
ColorSpecuisetfont displays standard dialog box for setting an object’s font character-
istics
waitbar displays waitbar warndlg display warning dialog box

For more information, see the help.

Example

Create and open message dialog box with string mess from previous example.

msgbox(mess,’Information’,’help’);

Fig. 9.3 shows the message dialog box with string mess "How are you?", with title "Infor-
mation", and with icon.

Figure 9.3: The message dialog box

Example

This program ask user, using input dialog window, for the number of apples and the number
of pears. Then evaluate a sum of this fruits and the result show to user in message box
window.

function input_dia
message1 = sprintf(’Number of apples’);
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9.6. TEST OF TEXT INPUT AND OUTPUT

message2 = sprintf(’Number of pears’);
message = {message1, message2};
dlg_title = ’Fruits’;
num_of_lines = 1;
preselection = {’5’, ’10’};
% input dialog
usr_inp = char(inputdlg(message, dlg_title, num_of_lines, preselection));

% Cancel press handling
if strcmp(usr_inp,’’)
return;

end;

num_of_apples = str2num(usr_inp(1,:));
num_of_pears = str2num(usr_inp(2,:));
num_of_fruits = num_of_apples + num_of_pears;

resultMessage = sprintf(’%d apples and %d pears is %d fruits’, num_of_apples, num_of_pears, num_of_fruits);

% message box
msgbox(resultMessage);

end

Figure 9.4: Input dialog box

Figure 9.5: The message dialog box

Fig. 9.4 shows the input dialog box with two input fields and Fig. 9.5 shows the message
dialog box with result of evaluation.

9.6 Test of text input and output

1. Write commands to request user input. What is the difference between entering num-
bers and characters?
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9.6. TEST OF TEXT INPUT AND OUTPUT

2. Write commands for displaying the entered data from previously question on the
screen.

3. Give commands for writing the entered data from first question to a text file.

4. Rewrite previous task using GUI - predefined dialogue boxes.
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10
Differential equation in the engineering praxis

10.1 Basic terms and commands

The solvers ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb solves initial
value problems for ordinary differential equations (shortcut ODE).

[T,Y] = solver(odefun, [t0, tf], y0, options) integrates the system of dif-
ferential equations y ′ = f (t, y) from time t0 to tf with initial conditions y0,

where solver is one of ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb
and odefun is a function handle that evaluates the right side of the differential equations.

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. In
general, ode45 is the best function to apply as a first try for most problems.

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine.
ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be more

efficient than ode45 at stringent tolerances and when the ODE file function is particularly
expensive to evaluate.

The above algorithms are intended to solve nonstiff systems. If they appear to be unduly
slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation formulas (NDFs).
ode23s is based on a modified Rosenbrock formula of order 2.
ode23t is an implementation of the trapezoidal rule using a "free" interpolant. Use this

solver if the problem is only moderately stiff and you need a solution without numerical
damping.

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula with a first
stage that is a trapezoidal rule step and a second stage that is a backward differentiation
formula of order two.

10.2 Electrical engineering application

10.2.1 RC circuit in series

The voltage source with constant voltage U0 = 100 V is connected to in series to the resistor
R = 200 Ω and the capacitor C = 5 µF at the moment t = 0. The voltage on the capacitor
is uC(0) = 0 at this moment t = 0.

According to Kirchhoff’s voltage law:

uR + uC = U0

Ri + uC = U0
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10.2. ELECTRICAL ENGINEERING APPLICATION

RC
duC

dt
+ uC = U0

duC

dt
=

U0 − uC

RC
Solution We use first-order differential equations with constant coefficients for a solu-

tion to a series circuit R, C and constant voltage source U0.
[t,uC] = ode45(odefun, [t0, tf], y0) integrates the system of differential equa-

tions duC
dt = f (t, uC) (in M-file RCcircuit) from time t0 to tf with initial conditions y0.

function duC=RCcircuit(t,uC)

R=200; % R=200 Ohm
C=5e-6; % C=5 mikroF
U0=100; % U0=100V

duC=(U0-uC)/(R*C); % first-order differential equations
end

The first-order differential equations is solved by calling the function RC_solution.m

function RC_solution
R=200; % R=200 Ohm
C=5e-6; % C=5 mikroF
U0=100; % U0=100V
[t,uC]=ode45(@RCcircuit,[0,0.01],0)

% ode45(@RCcircuit,[0,0.01],0) integrates the system of differential equations RCcircuit.m from time 0 to 0.01 with initial conditions 0.

subplot(3,1,1)
plot(t,uC,’r’)
xlabel(’t [s]’)
ylabel(’u_C [V]’)
legend(’u_C [V]’)

current=(U0-uC)/R; % calculation current flowing through the circuit

subplot(3,1,2)
plot(t,current)
xlabel(’t [s]’)
ylabel(’i [A]’)
legend(’i [A]’)

uR=U0-uC; % calculation resistor voltage

subplot(3,1,3)
plot(t,uR,’g’)
xlabel(’t [s]’)
ylabel(’u_R [V]’)
legend(’u_R [V]’)
end

These two user-defined functions must be saved under the name RCcircuit.m and
RC_solution.m to the current folder.

Then write to the command line in Command window for solving of RC transient phe-
nomena:

RC_solution

The graphical output of MATLAB is depicted in Fig. 10.1.
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Figure 10.1: The dependence of voltages uC , uR and current i on time t during RC transient
phenomena

10.3 System of differential equations

Solve a system of three first order differential equations:

dy1

dt
= −4y1 + 10y2 y3

dy2

dt
= 4y1 − 10y2 y3 − 30y2

2

dy3

dt
= 30y2

2

for the interval of integration from 0 to 3 with initial conditions y1(0) = 1, y2(0) = 0,
y3(0) = 0

function dy=sys_diff_eq(t,y)
% solving of the system of differential equations
% dy1/dt=-4*y1+10*y2*y3
% dy2/dt=4*y1-10*y2*y3-30*y2^2
% dy3/dt=30*y2^2

dy=zeros(3,1);
dy(1)=(-4*y(1))+(10*y(2)*y(3));
dy(2)=(4*y(1))-(10*y(2)*y(3))-(30*y(2)^2);
dy(3)=30*y(2)^2;

The solving of the system of differential equations will be performed in the function
solving.

function solving
% solving of system of differential equations
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Figure 10.2: The solving of system of three differential equations

[t,y]=ode45(@sys_diff_eq,[0,3],[1,0,0]); % solving of system of differential equations
% defined in m-file sys_diff_eq
% interval of integration from 0
% to 3 and vector of initial conditions
% y1(0)=1,y2(0)=0,y3(0)=0

figure % graphical window creating
subplot(3,1,1) % dividing graph to three parts (subplots), active is 1st
plot(t,y(:,1),’b’) % 2D plot drawing
xlabel(’t’) % x axis label
ylabel(’y_1’) % y axis label

subplot(3,1,2) % dividing graph to three parts (subplots), active is 2nd
plot(t,y(:,2),’g’) % 2D plot drawing
xlabel(’t’) % x axis label
ylabel(’y_2’) % y axis label

subplot(3,1,3) % dividing graph to three parts (subplots), active is 3rd
plot(t,y(:,3),’r’) % 2D plot drawing
xlabel(’t’) % x axis label
ylabel(’y_3’) % y axis label

figure % new graphical window creating (second)
plot(t,y) % 2D plot drawing
legend(’y_1’,’y_2’,’y_3’) % legend

These two user-defined functions must be saved under the name sys_diff_eq.m and
solving.m to the current folder.

Then write to the command line in Command window for solving of system of three
differential equations:

solving

The graphical output from two Figure window of MATLAB is depicted in Fig. 10.2

10.4 Higher orders differential equations

Example

Solve the Van der Pol differential equation:

d2 y1

dt2
−µ(1− y2

1 )
dy1

dt
+ y1 = 0
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10.4. HIGHER ORDERS DIFFERENTIAL EQUATIONS

Solution
It’s a second order differential equation. We must modify it to the system of first order
differential equations, using substitution:

dy1

dt
= y2

We substitute substitution into Van der Pol differential equation:

dy2

dt
−µ(1− y2

1 )y2 + y1 = 0

We modify this equation:
dy2

dt
= µ(1− y2

1 )y2 − y1

We obtain the system of two differential equations:

dy1

dt
= y2

dy2

dt
= µ(1− y2

1 )y2 − y1

and we proceed as in the previous example.
There are three ways to define system of differential equations in MATLAB:

1st way:

function dy=fce_vdp(t,y)
mi=1;
dy=[y(2);mi*(1-y(1)^2)*y(2)-y(1)];

or 2nd way:

function dy=fce_vdp(t,y)
mi=1;
dy(1,1)= y(2);
dy(2,1)= mi*(1-y(1)^2)*y(2)-y(1);

or 3rd way:

function dy=fce_vdp(t,y)
mi=1;
dy = zeros(2,1);
dy(1)= y(2);
dy(2)= mi*(1-y(1)^2)*y(2)-y(1);

The solving of the system of differential equations will be performed in the function
difrov.

function difrov
% solving of the system of first order differential equations
[t,y]=ode45(@fce_vdp,[0 20],[2 0]);

% solution printing
for cykl=1:length(t)

fprintf(’t = %8.4f\ty1 = %8.4f\ty2 = %8.4f\n’,t(cykl),y(cykl,1),y(cykl,2));
end

% graphs
plot(t,y(:,1),’-b’,’LineWidth’,2);
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hold on
plot(t,y(:,2),’--r’,’LineWidth’,2);

title(’Solution of the VDP’);
xlabel(’t’);
ylabel(’y_{1,2}’);
legend(’y_1’,’y_2’);
hold off

MATLAB answers

t = 0.0000 y1 = 2.0000 y2 = 0.0000
t = 0.0000 y1 = 2.0000 y2 = -0.0001
t = 0.0001 y1 = 2.0000 y2 = -0.0001
t = 0.0001 y1 = 2.0000 y2 = -0.0002
t = 0.0001 y1 = 2.0000 y2 = -0.0002
t = 0.0002 y1 = 2.0000 y2 = -0.0005

...

...

...

t = 19.9559 y1 = 2.0133 y2 = 0.1413
t = 19.9780 y1 = 2.0158 y2 = 0.0892
t = 20.0000 y1 = 2.0172 y2 = 0.0404

Fig. 10.3 shows graphical output the solving of the Van der Pol differential equation,
y1 and y2 =

dy1
dt .
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Figure 10.3: The solving of the Van der Pol differential equation, y1 and y2 =
dy1
dt

10.5 Solver parameters settings

Example

Solve differential equation
dy
dt
− y = 0
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for the interval of integration from 0 to 10 with initial condition y(0) = 5.
Solution

We modify this equation:
dy
dt
= y

function dy=diff_eq(t,y)
dy=y;

The solving of the differential equation will be performed in the function sol_diff_eq.
The input parameters of the this function are:
ts - the interval of integration,
y0 - initial condition.

function sol_diff_eq(ts,y0)
[t,y]=ode45(@diff_eq,ts,y0);
% graph
plot(t,y)
% solution printing
for c = 1:length(t)

fprintf(’t = %8.4f\ty = %8.4f\n’,t(c),y(c));
end

For ts vectors with two elements [0, 10], the solver returns the solution evaluated
at every integration step.

sol_diff_eq([0,10],5)
t = 0.0000 y = 5.0000
t = 0.0502 y = 5.2576
t = 0.1005 y = 5.5285

...

...

t = 9.5422 y = 69690.3442
t = 9.7711 y = 87612.6099
t = 10.0000 y = 110152.6760

For ts vectors with more than two elements, the solver returns solutions evaluated at
the given time points. The time values must be in order, either increasing or decreasing,
for example:

sol_diff_eq([0:2:10],5)
t = 0.0000 y = 5.0000
t = 2.0000 y = 36.9461
t = 4.0000 y = 273.0072
t = 6.0000 y = 2017.3417
t = 8.0000 y = 14906.8157
t = 10.0000 y = 110152.6760

or

sol_diff_eq([10:-1:0],5)
t = 10.0000 y = 5.0000
t = 9.0000 y = 1.8399
t = 8.0000 y = 0.6769
t = 7.0000 y = 0.2490
t = 6.0000 y = 0.0917
t = 5.0000 y = 0.0337
t = 4.0000 y = 0.0124
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t = 3.0000 y = 0.0046
t = 2.0000 y = 0.0017
t = 1.0000 y = 0.0006
t = 0.0000 y = 0.0002

Attention

In this case, the vector ts decreases from 10 to 0 and initial condition applies to y(10) = 5.

The fourth input argument of [t,y] = solver(odefun,[t0, tf], y0, options)
is options.

Using options, we can be set structure of optional parameters that change the default
integration properties. We can create options using the odeset function. We obtain this
structure:

options = odeset

options =
AbsTol: []

BDF: []
Events: []

InitialStep: []
Jacobian: []
JConstant: []
JPattern: []

Mass: []
MassConstant: []
MassSingular: []

MaxOrder: []
MaxStep: []

NonNegative: []
NormControl: []
OutputFcn: []
OutputSel: []

Refine: []
RelTol: []
Stats: []

Vectorized: []
MStateDependence: []

MvPattern: []
InitialSlope: []

Meaning of items in the options is as follows

AbsTol Absolute error tolerances that apply to the individual components of the solution
vector.

BDF Specifies whether you want to use the BDFs instead of the default NDFs (for ode15s
only).

Events Handle to a function that includes one or more event functions.

InitialStep Suggested initial step size.

Jacobian Matrix or function that evaluates the Jacobian.

JConstant Jacobian constant matrix.

131



10.5. SOLVER PARAMETERS SETTINGS

JPattern Generates a sparse Jacobian matrix numerically.

Mass Mass matrix or a function that evaluates the mass matrix.

MassConstant Mass constant matrix.

MassSingular Indicates whether the mass matrix is singular.

MaxOrder Maximum order formula used to compute the solution.

MaxStep Upper bound on solver step size.

NonNegative Specifies which components of the solution vector must be non-negative.

NormControl Control error relative to norm of solution.

OutputFcn A function for the solver to call after every successful integration step.

OutputSel Specifies which components of the solution vector are to be passed to the output
function.

Refine Increases the number of output points by a factor of Refine.

RelTol Relative error tolerance that applies to all components of the solution vector y .

Stats Determines whether the solver should display statistics about its computations.

Vectorized Allows the solver to reduce the number of function evaluations required.

MStateDependence Dependence of the mass matrix on y .

MvPattern Mass matrix sparsity pattern.

InitialSlope Vector representing the consistent initial slope yp
0
.

If we want to set, for example, relative tolerance to 10−9, we run this command

options = odeset(’RelTol’, 1e-9, ’MaxStep’, 1000, ’Vectorized’, ’on’);

and we obtain structure

options =

AbsTol: []
BDF: []

Events: []
InitialStep: []

Jacobian: []
JConstant: []
JPattern: []

Mass: []
MassConstant: []
MassSingular: []

MaxOrder: []
MaxStep: 1000

NonNegative: []
NormControl: []
OutputFcn: []
OutputSel: []

Refine: []
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RelTol: 1.0000e-009
Stats: []

Vectorized: ’on’
MStateDependence: []

MvPattern: []
InitialSlope: []

prepared to parametrize the ode function calling. Values [] means, that we want to leave
these parameters on default values.

10.6 User-defined parameters

We have again RC circuit. The voltage source with constant voltage U0 = 50 V is connected
to in series to the resistor R = 10 Ω and the capacitor C = 1 µF at the moment t = 0. The
voltage on the capacitor is uC(0) = 0 at this moment t = 0.

The circuit parameters U0, R and C are defined in the function rc_circ.m. We defined
it (for simplification) in 10.2.1 twice – in called function and in calling function. However
this is not too good programmer’s style. It is necessary to define user parameters one times
and send them into the function in_val.m. The user haven’t direct access to the in_val
function parameters, but they are available via additional parameters of the ode function,
next to the options variable. It is necessary to provide user parameters during the ode
function calling at the same order as they are defined in the called function in_val.

Parameter values of the ode23 function are commented in the following user-defined
functions, that must be saved under the name in_val.m and rc_circ.m to the current
folder.

function duc = in_val(t, uc, U, R, C)
% diff. equation of RCcircuit (serial), DC el. source
% this function obtain parameters U, R, C from the rc_circ function

duc = (U - uc) ./ (R .* C);

function rc_circ
% Solving of diff. equations
% Solve transient phenomena in serial RC circuit
% in case of connecting to DC voltage source in time t = 0
% using m-file in_val

% Numerical solution
% uc(0)=0 (capacitor is not charged at time T0)
% duc/dt = 1/RC*(U-uc), we compute uc
% ic = C*duc/dt
% Runge-Kutta of 2. and 3. order
% [t,uc]=ode23(@in_val,[begin_time end_time],[initial conditions],options,user_par);
% function ode23 has more parametrs, usually is possible to use implicit
% parameters can be set using function odeset

% circuit parameters setting
R = 10;
C = 10e-6;
U = 50;

% starting time [s]
T0 = 0;
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% ending time [s]
Tfinal = 2e-3;

% initial condition - capacitor is not charged at time T0
Uc0 = 0;

% accuracy setting
% tol = 1e-6;
options = odeset(’AbsTol’, 1e-6);

% graphical tracing of computation
% options = odeset(’outputFCN’, @odeplot);

% calling of ODE function - diff. eq. solving
% additional parameters U, R, C are send to the in_val function
[t,uc] = ode23(@in_val,[T0 Tfinal],[Uc0],options, U, R, C);

% current ic computing
% i.e. ic = C * duc / dt, use function diff to compute differential
current_c = C .* diff(uc) ./ diff(t);

% start to create graph
% get screen size to variable scrsz
scrsz = get(0,’ScreenSize’);

% create graph windows at the left corner of screen, lower edge distance
% is 1/5 of screen size, 1/2 of screen size high and wide as screen
figure(’Position’,[1 scrsz(4)/5 scrsz(3) scrsz(4)/2])

% create two subplots
subplot(1,2,1);

% first subplot - time dependency uc (blue color)
% solid line
plot(t, uc, ’-b’);

% titles and labels
title(’RC circuit - u_c’);
xlabel(’t’);
ylabel(’u_c’);

% second subplot
subplot(1,2,2);

% second subplot - time dependency ic (red color)
% solid line
% draw one element less - current_c is shorter - side effect of diff function
% Test it, for example, with following values: diff([5 8 9 7 10])

plot(t(1:length(t)-1),current_c,’-r’);
title(’RC circuit - i_c’);
xlabel(’t’);
ylabel(’i_c’);

The graphical output of MATLAB is depicted in Fig. 10.4
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Figure 10.4: The dependence of voltage uC and current i on time t during RC transient
phenomena

10.7 Non-numerical solving of ordinary differential equations

Simpler differential equations is possible to solve non-numerically using the Symbolic Math
Toolbox. In this toolbox is available function dsolve, which symbolically solves the ordi-
nary differential equations.

Example

Solve differential equation
dy
dt
= y

Solution

syms y
dsolve(’Dy = y’)

MATLAB answers

ans =
C2*exp(t)

Example

Solve differential equation
dy
dt
= y

with initial condition y(0) = 5.
Solution
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syms y
dsolve(’Dy = y’,’y(0) = 5’)

MATLAB answers

ans =
5*exp(t)

10.8 Test of differential equation

1. What solvers do you know for solving differential equations?

2. Solve the differential equation dy
dx + 3y − 5 for the interval of integration from 0 to

10 with initial condition y(0) = 2.
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11
Differential equations – advanced part

11.1 Differential equations in electrical engineering praxis

RLC circuit
The voltage source with constant voltage U0 = 100 V is connected to in series to the

resistor R= 200 Ω, the inductor L = 0.5 H and the capacitor C = 5 µF at the moment t = 0
Fig. 11.1 The voltage on the capacitor is uC(0) = 0 at this moment t = 0.

Figure 11.1: Series RLC circuit

According to Kirchhoff’s voltage law:

uL + uR + uC = U0

L
di1
dt
+ Ri1 +

1
C

∫

idt = U0

L
ddi1

dt

dt
+ R

di1
dt
+

1
C

i1 = 0

L
d2i1
dt2

+ R
di1
dt
+

1
C

i1 = 0

We solve second order differential equation. We must modify it to the system of first order
differential equations, using substitution:

i2 =
di1
dt

We substitute substitution into differential equation:

L
di2
dt
+ Ri2 +

1
C

i1 = 0
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We modify this equation:

L
di2
dt
= −Ri2 −

1
C

i1

di2
dt
=
−Ri2 −

1
C i1

L
We obtain the system of two differential equations:

di1
dt
= i2

di2
dt
=
−Ri2 −

1
C i1

L
This system will be solved in MATLAB.
The inductor voltage:

uL = L
di1
dt
= Li2

The resistor voltage according Ohm’s law:

uR = Ri1

The capacitor voltage according Kirchhoff’s voltage law:

uC = U0 − uR − uL

The initial conditions for the solution of the differential equation must be determined.
Physical initial conditions for the time t = 0 are known:
i1(0−) = i1(0+) = i1(0) = 0 (current doesn’t flow through a circuit)
uC(0−) = uC(0+) = uC(0) = 0 (the capacitor isn’t charged)
From Kirchhoff’s voltage law:

uL = U0 − uR − uC

The following formula applies:

uL = L
di1
dt

Now we substitute uL into the equation of Kirchhoff’s law:

L
di1
dt
= U0 − uR − uC ⇒

di1
dt
=

U0 − uR − uC

L

For the time t = 0+:
di1
dt
=

U0 − uC(0)
L

−
uR

L
Now we substitute uR = Ri into the equation above

di1
dt
=

U0 − uC(0)
L

−
Ri(0)

L

After substituting of physical initial conditions:

di1
dt
=

100− 0
0.5

−
200 · 0

0.5
=

100
0.5
= 200
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The initial conditions for the our system of two the differential equation are therefore as
follows:

i1(0) = 0

di1
dt
(0) = i2(0) = 200

There are three ways to define the system of two differential equations in MATLAB:

1st way:

function dcurrent=RLC_diff_eq(t,current)
R=200; % R=200 Ohm
L=0.5; % L=0,5 H
C=5e-6; % C=5 microF
U0=100; % U0=100V
dcurrent=[current(2);(-1/C*current(1)-R*current(2))/L];

or 2nd way:

function dcurrent=RLC_diff_eq(t,current)
R=200; % R=200 Ohm
L=0.5; % L=0,5 H
C=5e-6; % C=5 microF
U0=100; % U0=100V
dcurrent(1,1)= current(2);
dcurrent(2,1)= (-1/C*current(1)-R*current(2))/L;

or 3rd way:

function dcurrent=RLC_diff_eq(t,current)
R=200; % R=200 Ohm
L=0.5; % L=0,5 H
C=5e-6; % C=5 microF
U0=100; % U0=100V
dcurrent = zeros(2,1);
dcurrent(1) = current(2);
dcurrent(2) = (-1/C*current(1)-R*current(2))/L;

The solving of the system of two differential equations will be performed in the function
RLC_solution.

function RLC_solution
R=200; % R=200 Ohm
L=0.5; % L=0,5 H
C=5e-6; % C=5 mikroF
U0=100; % U0=100V
[t,current]=ode45(@RLC_diff_eq,[0,0.1],[0,(100/0.5)]);

subplot(2,2,1) % dividing graph to three parts (sub-plots), active is 1st
plot(t,current(:,1)) % 2-D line plot
xlabel(’t [s]’) % x-axis label
ylabel(’i [A]’) % y-axis label
legend(’i [A]’) % legend

% calculations
% the inductor voltage
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uL = L*current(:,2);

% the resistor voltage
uR = R*current(:,1);

% the capacitor voltage
uC = U0-uR-uL;

% graphs:
subplot(2,2,2) % dividing graph to three parts (sub-plots), active is 2nd
plot(t,uC,’r’) % 2-D line plot, r - color of line
xlabel(’t [s]’) % x-axis label
ylabel(’u_C [V]’) % y-axis label, character _ creates subscript
legend(’u_C [V]’) % legend, character _ creates subscript

subplot(2,2,3) % dividing graph to three parts (sub-plots), active is 3rd
plot(t,uR,’g’) % 2-D line plot, g - color of line
xlabel(’t [s]’) % x-axis label
ylabel(’u_R [V]’) % y-axis label, character _ creates subscript
legend(’u_R [V]’) % legend, character _ creates subscript

subplot(2,2,4) % dividing graph to three parts (sub-plots), active is 4th
plot(t,uL,’m’) % 2-D line plot, m - color of line
xlabel(’t [s]’) % x-axis label
ylabel(’u_L [V]’) % y-axis label, character _ creates subscript
legend(’u_L [V]’) % legend, character _ creates subscript

These two user-defined functions must be saved under the name RLC_diff_eq.m and
RLC_solution.m to the current directory.

Then write to the command line in Command window for solving of RLC transient
phenomena:

RLC_solution

Fig. 11.2 shows graphical output of the solving of the differential equation RLC tran-
sient phenomena.
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Figure 11.2: The solving of transient phenomena in the RLC circuit
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11.2 Test of using of the differential equations in technical praxis

Find i(t) for the series RLC circuit shown in Fig 11.3, if R = 450 Ω, L = 15 H and C =
150 µF. The voltage of source is U0 = 200 V. Assume that the capacitor is not charged at
time t = 0.

Figure 11.3: Series RLC circuit
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12
Creating the comprehensive applications

12.1 Parallel connection of n resistors

This comprehensive program allows the user to enter the values of parallel-connected re-
sistors (Fig. 12.1) from the keyboard, write the results on the screen and to a file.

Figure 12.1: The parallel connection of several resistors

Solution
The commands and functions that comprise the new function must be put in a file whose
name defines the name of the new function, with a filename extension of ’.m’. At the top
of the file must be a line that contains the syntax definition for the new function:

function [ output_args ] = filename( input_args )

The input and output arguments are not required.
We create functions that perform input values??, calculation, screen output, file output.

These functions with names parallel_resistors.m, resulting_resistance_sum.m,
resulting_resistance_for.m, output_screen.m, and output_file.mwill be stored
on the disk in the current directory. These functions will be called in the main function
n_parallel.m, which will be stored in the same directory.

Keyboard input (output function parallel_resistors - vector with the values of
resistors):

function R=parallel_resistors
n=input(’Enter the number of resistor: ’);
R=zeros(1,n);
if (n<=0)

disp(’Not what counts :-(’)
return

end
for c=1:n

while(1)
fprintf(’\nEnter the resistance value R(%d)[Ohm]: ’,c)
R(c)=input(’’);
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12.1. PARALLEL CONNECTION OF N RESISTORS

if (R(c)<0)
fprintf(’\nNon-negative value is expected and R(%d)=%.3f[Ohm] have been entered!\n’,c,R(c))
continue

else
break;

end
end

end

The resulting value is obtained built-in functions sum and non-matrix operations (input
function - vector with the values of resistors, the output resulting resistance of resistors
connected in parallel):

The functions resulting_resistance_sum and resulting_resistance_for use
functions tic and toc, which work together to measure elapsed time. The function tic
starts a stopwatch timer. The function toc reads the stopwatch timer.

function Rp1=resulting_resistance_sum(R)
tic
Rp1=(sum(1./R))^(-1);
toc

The resulting value is obtained for loop (input - vector with the values of resistors):

function Rp2=resulting_resistance_for(R)
tic
s=0;
for n=1:length(R)

s=s+(1./R(n));
end
Rp2=1./s;
toc

Screen output (input - vector with the values of resistors and the resulting resistance):

function output_screen(R,Rp)
fprintf(’\nEntering resistance values are:\n’)
for c=1:length(R)

fprintf(’R%d = %8.3f Ohm\n’,c,R(c));
end
fprintf(’\nThe resulting resistance value of the parallel-connected resistors: %8.3f Ohm\n’,Rp)

Output to a file (input - vector with the values of resistors, resulting resistance of resis-
tors connected in parallel and character. If the character is the letter ’A’ or ’a’, the data
will be stored in the file):

function output_file(R,Rp,soub)
soub=upper(soub);
if (soub == ’A’)

name=input(’\nEnter the file name: ’,’s’);
fd=fopen(name,’w’);
fprintf(fd,’\nEntering resistance values are:\n’);
for c=1:length(R)

fprintf(fd,’R%d = %8.3f Ohm\n’,c,R(c));
end;
fprintf(fd,’\nThe resulting resistance value of the parallel-connected resistors: %8.3f Ohm\n’,Rp);
fclose(fd);

end
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12.1. PARALLEL CONNECTION OF N RESISTORS

All previous function call in one function (main program) n_parallel:

function n_parallel
R=parallel_resistors;
if (min(size(R))==0)

return
end

how=input(’\nUsing the sum or for? Enter a character S or F: ’,’s’);
how=upper(how);
switch (how)

case ’S’
Rp=resulting_resistance_sum(R);

case ’F’
Rp=resulting_resistance_for(R);

otherwise
disp(’Bad choice’);
return

end

output_screen(R,Rp);

s=input(’\nWould you like to write the results to a file? If so, enter A: ’,’s’);
output_file(R,Rp,s);

After the call of function n_parallel, the user is prompted to enter data. Diary of
Command window:

Enter the number of resistor: 5

Enter the resistance value R(1)[Ohm]: 1

Enter the resistance value R(2)[Ohm]: -3

Non-negative value is expected and R(2)=-3.000[Ohm] have been entered!

Enter the resistance value R(2)[Ohm]: 3

Enter the resistance value R(3)[Ohm]: 4

Enter the resistance value R(4)[Ohm]: 2

Enter the resistance value R(5)[Ohm]: 5

Using the sum or for? Enter a character S or F: S

Elapsed time is 0.000082 seconds.

Entering resistance values are:
R1 = 1.000 Ohm
R2 = 3.000 Ohm
R3 = 4.000 Ohm
R4 = 2.000 Ohm
R5 = 5.000 Ohm

The resulting resistance value of the parallel-connected resistors: 0.438 Ohm

Would you like to write the results to a file? If so, enter A: A
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12.2. QUADRATIC EQUATION SOLVER WITH GUI

Enter the file name: data.txt

Users enter twice the value of R2 due to his an error (negative value). Data were stored in a
file data.txt. The file name chosen by the user. The file appears in the current directory.

12.2 Quadratic equation solver with GUI

Create a solver with GUI, which solve quadratic equation. Try created program – solve
quadratic equation 10x2 + 36x − 65= 0.

Solution
We use inputdlg and msgbox included in predefined dialog boxes set in MATLAB stan-

dard libraries.

function diakvadr
message1 = sprintf(’Coeficient a’);
message2 = sprintf(’Coeficient b’);
message3 = sprintf(’Coeficient c’);

message = {message1, message2, message3};
dlgTitle = ’Quadratic equation’;
numOfLines = 1;
presel = {’1’,’1’,’1’};
usrInp = inputdlg(message, dlgTitle, numOfLines, presel);
usrInp = char(usrInp);
if strcmp(usrInp, ’’)

return;
end;
x = str2num(usrInp(1,:));
y = str2num(usrInp(2,:));
z = str2num(usrInp(3,:));
if ((x == []) | (y == []) | (z == []))

return;
end;
C=[x,y,z];
result = roots(C);
resMessage = sprintf(’For input a = %.2f, b = %.2f, c = %.2f\n’, x, y, z);
for loop=1:length(result)

resMessage = [resMessage, sprintf(’Result [%d] is %.2f + %.2fi\n’, loop, real(result(loop)), imag(result(loop)))];
end;
msgbox(resMessage, ’Finished evaluation’, ’help’);

end

Running this code produced dialogs depicted in 12.2 and 12.3.

12.3 Test of creating the comprehensive applications

Create comprehensive program, which allows the user to enter the values of serially con-
nected resistors (Fig. 12.4) from the keyboard. Calculate the resulting value of the serial
connection of resistors.

1. Write the results on the screen.

2. Write the results to a file.
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12.3. TEST OF CREATING THE COMPREHENSIVE APPLICATIONS

Figure 12.2: Input of parameters of the quadratic equation

Figure 12.3: Results of the quadratic equation

Figure 12.4: The serial connection of several resistors
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13
Conclusion and repetitions

13.1 Final test

This section presents the final test, including the correct answers.

1. Which instruction is used for acquiring the number of elements of the 1-D defined
vector?

(a) vector

(b) length

(c) diag

(d) getvect

2. For which type of matrix is impossible to use the transposition mark (A’) without
change value of some elements?

(a) for all matrixes

(b) for matrix with complex elements

(c) for matrixes with real elements

(d) for empty matrixes

3. Solve this system of linear equations:

5x1 − x3 = 2

6x1 + 3x2 = 12

9x1 + 4x2 + x3 = 20

(a) A = [5,0,-1;6,3,0;9,4,1]; b = [2;12;20]; x = A \ b

(b) A = [5,0,-1;6,3,0;9,4,1]; b = [2;12;20]; x = A \ b.’

(c) A = [5,0,-1;6,3,0;9,4,1]; b = [2;12;20]; x = A.’ \ b

(d) A = [5,0,-1;6,3,0;9,4,1]; b = [2;12;20]; x = A / b

4. Which instruction is useful for broken down of the one graphic window into more
areas?

(a) picture on

(b) subplot
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(c) plot area

(d) grid on

5. Which value contains the variable x after execution of the next script:

x = 100;
while(x > 50)
x = x - 5;
end;

(a) 100

(b) 50

(c) 55

(d) 45

6. Which command is possible to replace the functionality of several commands if-else
used for several values of one variable?

(a) conditional command of loop (cycle) - while

(b) command switch

(c) command case

(d) loop (cycle) for

7. Which instruction is useful for interruption of the actual iteration of loop and proceed
go on the rest of program?

(a) stop

(b) continue

(c) break

(d) end

8. Solve the equation 6x6 + x4 − x3 + 5x2 + x = 1.

(a) p = [6,1,-1,5,1;1]; x = roots(p)
(b) p = [6,1,-1,5,1,1,1]; x = polyval(p,1)
(c) p = [6,0,1,-1,5,1,0]; x = polyval(p,6)
(d) p = [6,0,1,-1,5,1,-1]; x = roots(p)

9. Evaluate integral of function f (t) where t ∈ 〈−5π, 10π〉. Function is defined using
formula:

f (t) = sin(t2) cos2(t)

Create necessary m-file for evaluating integral of this function

y =

10π
∫

−5π

f (t)d t

Create program in MATLAB (all necessary m-files and command-window commands),
use MATLAB integrated function for evaluating of this integral for interval 〈−5π, 10π〉.

148



13.1. FINAL TEST

Print this result to the screen (to the command window) and create a graph of the
origin function f (t) for interval of t given by user from command window (ask user
the lower and upper limit of interval from your program). Choosing of suitable step
for graph evaluation is on your own opinion.

10. Create program in MATLAB (all necessary m-files and command-window commands),
which solve given differential equation numerically:

dy
dt
= 10y − 8y6 + 15

Solve this differential equation for given interval t ∈ 〈−1,−0.9〉 and given initial
condition y(0) = 1.2.

Create a graph of the result (evaluated function). Save solution (vector) y into file.
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13.1. FINAL TEST

13.1.1 Final test solution

Questions’ solution :
1.(b),
2.(b),
3.(a),
4.(b),
5.(b),
6.(b),
7.(c),
8.(d).

9. Listing of program :

function y = myFun(t)
y = sin(t .^ 2) .* cos(t) .^ 2;

end

function integration
intg = quad(@myFun, -5*pi, 10*pi);
fprintf(’Integral is %f\n’, intg);

lowerLimit = input(’Lower limit of function: ’);
upperLimit = input(’Upper limit of function: ’);

t = linspace(lowerLimit, upperLimit, 1000);
y = myFun(t);
plot(t,y);
xlabel(’\it{t}’);
ylabel(’\it{y}’);

end
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−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y

Figure 13.1: The graphical output of function f (t) = sin(t2) cos2(t) within the limits cho-
sen by user

The function call and answer of MATLAB (listing of Command Window)
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integration
Integral is 0.427862
Lower limit of function: -8
Upper limit of function: 8

The graphical output is depicted in Fig 13.1.

10. Listing of program :

function dy=diffEq(t,y)
dy = 10.*y - 8.*y.^6 + 15;

end

function sol_diffEq
[t,y]=ode45(@diffEq,[-1,-0.9],1.2);

plot(t,y) % graph
xlabel(’t’)
ylabel(’y’)

f = fopen(’data_y.txt’,’w’);
for c = 1:length(y)

fprintf(f,’%8.4f\n’,y(c)); % saving of solution into file
end
fclose(f);

end

−1 −0.98 −0.96 −0.94 −0.92 −0.9
1.2

1.205

1.21

1.215

1.22

1.225

1.23

1.235

t

y

Figure 13.2: The graphical output of solution y of differential equation dy
dt = 10y−8y6+15

The data saved in the file data_y.txt

1.2000
1.2068
1.2120
...
...
1.2268

Fig 13.2 shows the graphical output from MATLAB.
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13.2. CONCLUSION

13.2 Conclusion

This MATLAB book and his using in the electro technical praxis appear from the knowledge
of the university teachers’ team from the West Bohemian University of Pilsen. The book
content was chosen with the respect to teaching knowledge from the separate passage and
his application in the teaching process with the students.

MATLAB has the most important standard rule in the field of technical computing. Exist
cheaper GNU alternative, but in theirs application is necessary calculate with some com-
promises.

MATLAB has important rule not only in the teaching process, but in the research and
scientific work in international scale and his rule in the technical and engineering praxis is
impossible compensate with the other alternative programs.
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