Practicing

Exercise 1 - Transient Analysis

For the circuit shown below find the currents $i_{1}(t), i_{2}(t)$ and the voltage $u_{\mathrm{C}}(t)$. Use a numerical solution to the differential equations (graphs for end time $=0.01 \mathrm{~s}$), when $R_{1}=5 \Omega, R_{2}=5 \Omega, L_{1}=5 \mathrm{mH}, L_{2}=10 \mathrm{mH}, C=50 \mu \mathrm{~F}$ and $U_{0}=20 \mathrm{~V}$. The switch has been opened for a long time.

Circuit

Fill in differential equations in matrix form and values of initial conditions and values of steady states.

$$
\left[\begin{array}{c}
\frac{d i_{1}(t)}{d t} \\
\frac{d i_{2}(t)}{d t} \\
\frac{d u_{\mathrm{C}}(t)}{d t}
\end{array}\right]=[
$$

$\left[\begin{array}{l}i_{1}(0) \\ i_{2}(0) \\ u_{\mathrm{C}}(0)\end{array}\right]=\left[\begin{array}{l} \\ \end{array}\right]$

$$
\left[\begin{array}{c}
i_{1}(\infty) \\
i_{2}(\infty) \\
u_{\mathrm{C}}(\infty)
\end{array}\right]=[\quad[\quad]
$$

Exercise 2 - Nodal Analysis

For the circuit shown below find the branch currents $\boldsymbol{I}_{\mathbf{1}}$ to $\boldsymbol{I}_{\mathbf{6}}$ (maximum value and phase degree), the nodal voltages $\boldsymbol{U}_{\mathbf{1}}$ to $\boldsymbol{U}_{\mathbf{3}}$ and the active power P supplied by the source. For impedances use a general label $\boldsymbol{Z}_{\mathbf{i}}$.
Print of the nodal voltages to file "voltages.txt" in the form (example):
$\mathrm{U} 1 \mathrm{~m}=20.00<-60^{\circ}[\mathrm{V}]$

Circuit values are
$R_{1}=50 \Omega, R_{2}=20 \Omega, R_{3}=50 \Omega, L=100 \mathrm{mH}, C_{1}=25 \mu \mathrm{~F}, C_{2}=25 \mu \mathrm{~F}$, $u_{0}(t)=200 \sin \left(\omega t+30^{\circ}\right) \mathrm{V}$ and $\omega=10^{3} \mathrm{rad} / \mathrm{s}$.

Circuit

